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Chapter 1 

 

Members Subjected to Torsional Loads 
 

Torsion of circular shafts 

 
Definition of Torsion: Consider a shaft rigidly clamped at one end and twisted at the other end by a torque T = F.d 
applied in a plane perpendicular to the axis of the bar such a shaft is said to be in torsion. 

 

 
Effects of Torsion: The effects of a torsional load applied to a bar are 

 
(i) To impart an angular displacement of one end cross 1 section with respect to the other end. 

 
(ii) To setup shear stresses on any cross section of the bar perpendicular to its axis. 

 
GENERATION OF SHEAR STRESSES 

 

The physical understanding of the phenomena of setting up of shear stresses in a shaft subjected to a torsion may 
be understood from the figure 1-3. 



 

 

 

 

 
 
 
 
 
 

 

 
 

Fig 1: Here the cylindrical member or a shaft is in static equilibrium where T is the resultant external torque acting on the 
member. Let the member be imagined to be cut by some imaginary plane 1mn'. 

 

 
Fig 2: When the plane 1mn' cuts remove the portion on R.H.S. and we get a fig 2. Now since the entire member is in 

equilibrium, therefore, each portion must be in equilibrium. Thus, the member is in equilibrium under the action of resultant 
external torque T and developed resisting Torque Tr .



 

 

 

 

 

 

 

 
 

Fig 3: The Figure shows that how the resisting torque Tr is developed. The resisting torque Tr is produced by virtue of an 
infinites mal shear fo rces acting on the plane perpendicular to the axis of the shaft. Obviously such shear forces would be 
develo ped by virtue of sheer stresses. 

 
Therefore we can say that when a particular member (say shaft in this case) is subjected to a torque, the result would 
be that on any element there will be shear stresses acting. While on other faces the complementary sheer forces 
come into picture. Thus, we can say that when a member is sub jected to torque, an element of this member will be 
subjected to a state of pure shear. 

 
Shaft: The shafts are the machine elements which are used to transmit power in machines. 

 
Twisting Moment: The twisting mo ment for any section along the bar / shaft is defined to be the algebraic sum of the 

moments of the applied couples that lie to one side of the section under considera tion. The choice of the side in any 
case is of course arbitrary. 

 
Shearing Strain: If a generator a 1 b is marked on the surface of the unloaded bar, then afte r the twisting moment 'T' 

has been applied this li ne moves to ab'. The angle 1γ' measured in radians, between the final and original positions of 
the generators is defined as the shearing strain at the surface of the bar or shaft. The same definition will hold at any 
interior point of the bar. 

 

 
Modulus of Elasticity in shear: T he ratio of the shear stress to the shear strain is called the modulus of 

elasticity in shear OR Modulus of Rigidity and in represented by the symbol  



 

 

 

 

 

 

 

 

 

 

 

 

Angle of Twist: If a shaft of length L is subjected to a constant twisting moment T along its l ngth, than the angle θ 

through which one end of t he bar will twist relative to the other is known is the angle of twist. 

 

 
฀ Despite the difference s in the forms of loading, we see that there are number of similarities 

between bending and torsion, including for example, a linear variation of stresses and strain 
with position. 

 
In torsion the members are subjected to moments (couples) in planes normal to their axes. 

 
฀ For the purpose of desiging a circular shaft to withstand a given torqu e, we must develop an 

equation giving the relation between twisting moment, ma ximum shear stress produced, and 
a quantity representing the size and shape of the cross-sectional area of the shaft. 

 
Not all torsion problems, involve rotating machinery, however, for example some types of veh icle suspension system 
employ torsion al springs. Indeed, even coil springs are really curved mem bers in torsion as shown in figure. 

 

 
฀ Many torque carrying engineering members are cylindrical in shape. Examples are drive 

shafts, bolts and screw drivers. 

 
Simple Torsion Theory or Develo pment of Torsion Formula : Here we are basically inter ested to derive an equation between the 

relevant parameters 

 

Relationship in Torsion:  



 

 

 

 

 

 

 

 

 

 

 

 
1 st Term: It refers to applied loading ad a property of section, which in the instance is the polar second moment of 
area. 

 
2 nd Term: This refers to stress, and the stress increases as the distance from the axis increases. 

 
3 rd Term: it refers to the deformation and contains the terms modulus of rigidity & combined term ( θ  l) which is 
equivalent to strain for the purpose of designing a circular shaft to with stand a given torque we must develop an equation 
giving the relation between Twisting moments max m shear stain produced and a quantity representing the size and 
shape of the cross 1 sectional area of the shaft. 

 

 
Refer to the figure shown above where a uniform circular shaft is subjected to a torque it can be shown that every section 
of the shaft is subjected to a state of pure shear, the moment of resistance developed by the shear stresses being every 
where equal to the magnitude, and opposite in sense, to the applied torque. For the purpose of deriving a simple theory to 
describe the behavior of shafts subjected to torque it is necessary make the following base assumptions. 

 
Assumption: 

 
(i) The materiel is homogenous i.e of uniform elastic properties exists throughout the material. 

 
(ii) The material is elastic, follows Hook's law, with shear stress proportional to shear strain. 

 
(iii) The stress does not exceed the elastic limit. 

 
(iv) The circular section remains circular 

 
(v) Cross section remain plane. 

 
(vi) Cross section rotate as if rigid i.e. every diameter rotates through the same angle. 



 

 

 

 

 

 

 

 

 

 

 

 

 
 

Consider now the solid circular shaft of radius R subjected to a torque T at one end, the other end being fixed Under the 

action of this torque a radial line at the free end of the shaft twists through an angle θ , point A moves to B, and AB 

subtends an angle 1 γ ' at the fixed end. This is then the angle of distortion of the shaft i.e the shear strain. 

Since angle in radius = arc / Radius 

arc AB = Rθ 

= L γ [since L and γ also constitute the arc AB] 

Thus, γ = Rθ / L (1) 

From the definition of Modulus of ri gidity or Modulus of elasticity in shear 

 

 
Stresses: Let us consider a small strip of radius r and thickness dr which is subjected to shear stress '. 



 

 

 

 

 

 

 

 

 

 

 

 

 
 

The force set up on each element 

 
= stress x area 

 

= τ' x 2π r dr (approximately) 
 

This force will produce a moment or torque about the center axis of the shaft. 

 

= τ' . 2 π r dr . r 

= 2 π τ' . r
2
. dr 

The total torque T on the section, will be the sum of all the contributions.  
 

Since τ' is a function of r, because it varies with radius so writing down ' in terms of r from th e equation (1). 



 

 

 

 

 

 

 

 

 

 

 

 

 
 

Where 

 
T = applied external Torque, which is constant over Length L; 

 
J = Polar moment of Inertia 

 

[ D = Outside diameter ; d = inside diameter ] 

G = Modules of rigidity (or Modulus of elasticity in shear) 

 

θ = It is the angle of twist in radians on a length L. 

 
Tensional Stiffness: The tensional stiffness k is defined as the torque per radius twist 

i.e, k = T / = GJ / L 

Power Transmitted by a shaft : If T is the applied Torque and ω is the angular velocity of the shaft, then the power transmitted by 
the shaft is 
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Distribution of shear stresses in circular Shafts subjected to torsion : 

 
The simple torsion equation is writt en as 

 

 
This states that the shearing stress varies directly as the distance 1r' from the axis of the sha ft and the following is the 
stress distribution in the plane of cross section and also the complementary shearing stresses in an axial plane. 

 

 
Hence the maximum strear stress o ccurs on the outer surface of the shaft where r = R 

The value of maximum shearing stress in the solid circular shaft can be determined as 

 
 

From the above relation, following c onclusion can be drawn 

 

(i) τ max ∝ T 

 

(ii) τ 
m 3 

max 1/d 

Power Transmitted by a shaft: 



 

 

 

 

 

 

 

 

 

 

 

 
In practical application, the diamete r of the shaft must sometimes be calculated from the power which it is required to 
transmit. 

 
Given the power required to be tran smitted, speed in rpm 1N' Torque T, the formula connecting 

These quantities can be derived as follows 

 
Torsional stiffness: The torsional stiffness k is defined as the torque per radian twist . 

 

 
For a ductile material, the plastic flo w begins first in the outer surface. For a material which is weaker in shear 
longitudinally than transverse ly 1 for instance a wooden shaft, with the fibres parallel t o axis the first cracks will be 
produced by the she aring stresses acting in the axial section and they will uppe r on the surface of the shaft in the 
longitudin al direction. 

 
In the case of a material which is weaker in tension than in shear. For instance a, circular sha ft of cast iron or a 

cylindrical piece of chalk a cracck along a helix inclined at 45
0 

to the axis of shaft often occurs. 

Explanation: This is because of the fact that the state of pure shear is equivalent to a state o f stress tension in one 

direction and equal compression in perpendicular direction. 

 

A rectangular element cut from the outer layer of a twisted shaft with sides at 45
0 

to the axis will be subjected to 
such stresses, the ten sile stresses shown will produce a helical crack mentioned . 



 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

TORSION OF HOLLOW SHAFTS: 

 

From the torsion of solid shafts of circular x 1 section , it is seen that only the material at the outer surface of the shaft can 
be stressed to the limit assigned as an allowable working stresses. All of the material within the shaft will work at a lower 
stress and is not being used to full capacity. Thus, in these cases where the weight reduction is important, it is 
advantageous to use hollow shafts. In discussing the torsion of hollow shafts the same assumptions will be made as in the 
case of a solid shaft. The general torsion equation as we have applied in the case of torsion of solid shaft will hold good 
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Hence by examining the equation (1) and (2) it may be seen that the τ 

in the case of a so lid shaft having the same outside diameter. 

 
Reduction in weight: 

max in the case of hollow shaft is 6.6% larger then 

 

Considering a solid and hollow shafts of the same length 'l' and density 'ρ' with di = 1/2 Do 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

Hence the reduction in weight would be just 25%. 

 
Illustrative Examples : 

 

Problem 1 

 

A stepped solid circular shaft is built in at its ends and subjected to an externally applied torque. T0 at the shoulder as 

shown in the figure. De termine the angle of rotation θ0 of the shoulder section wh ere T0 is applied ? 
 

 
Solution: This is a statically indeterminate system because the shaft is built in at both ends. All that we can find from the 

statics is that the sum of two reactive torque TA and TB at the built 1 in ends of the shafts must be equal to the applied 
torque T0 

 
Thus TA+ TB = T0------ (1) 

 
[from static principles] 

 
Where TA ,TB are the reactive torque at the built in ends A and B. wheeras T0 is the applied t orque 

 
From consideration of consistent d eformation, we see that the angle of twist in each portion o f the shaft must be same. 



 

 

 

 

 

 

 

 

 

 

 

 

i.e θa = θ b = θ 0 

 

using the relation for angle of twist  

N.B: Assuming modulus of rigidity G to be same for the two portions 

So the defines the ratio of TA and TB 

So by solving (1) & (2) we get 

 

 
Non Uniform Torsion: The pure to rsion refers to a torsion of a prismatic bar subjected to torques acting only at the 
ends. While the non uniform torsion differs from pure torsion in a sense that the b ar / shaft need not to be prismatic and 
the applied torques may vary along the length. 

 

 
Here the shaft is made up of two different segments of different diameters and having torques applied at several cross 
sections. Each region of the bar between the applied loads between changes i n cross section is in pure torsion, hence 
the formul a's derived earlier may be applied. Then form the internal torque, maximum shear stress and angle of rotation 
for each region can be calculated from the relation 

 

 
The total angle to twist of one end of the bar with respect to the other is obtained by summation using the formula 



 

 

 

 

 

 

 

 

 

 

 

 

 
 

If either the torque or the cross section changes continuously along the axis of the bar, then 

the ∑ (summation can be replaced by an integral sign ( ∫ ). i.e We will have to consider a diffe rential element. 

 

 

 
After considering the differential ele ment, we can write 

 
Substituting the expressions for Tx and Jx at a distance x from the end of the bar, and then integrating between the 
limits 0 to L, find the v alue of angle of twist may be determined. 

 

 
Closed Coiled helical springs su bjected to axial loads: 

 

Definition: A spring may be defined as an elastic member whose primary function is to deflect or distort under the 

action of applied load; it recovers its original shape when load is released. 

 
or 

 
Springs are energy absorbing units whose function is to store energy and to restore it slowly or rapidly depending 
on the particular application. 

 
Important types of springs are: 

 
There are various types of springs such as 



 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(i) helical spring: They are made of wire coiled into a helical form, the load being applied along the axis of the helix. In 

these type of springs the major stresses is torsional shear stress due to twisting. They are both used in tension and 
compression. 

 

 

(ii) Spiral springs: They are made of flat strip of metal wound in the form of spiral and loaded in torsion. 

 
In this the major stresses are tensile and compression due to bending. 

 

 
(iv) Leaf springs: They are composed of flat bars of varying lengths clamped together so as to obtain greater efficiency . 

Leaf springs may be full elliptic, semi elliptic or cantilever types, In these type of springs the major stresses which come 
into picture are tensile & compressive. 



 

 

 

 

 

 

 

 

 

 

 

 

 
 

These type of springs are used in the automobile suspension system. 

 
Uses of springs : 

 
(a) To apply forces and to control motions as in brakes and clutches. 

 
(b) To measure forces as in spring balance. 

 
(c) To store energy as in clock springs. 

 
(d) To reduce the effect of shock or impact loading as in carriage springs. 

 
(e) To change the vibrating characteristics of a member as inflexible mounting of motors. 

 
Derivation of the Formula : 

 

In order to derive a necessary formula which governs the behaviour of springs, consider a closed coiled spring subjected 
to an axial load W. 

 

 
 
 



 

 

 

 

Let 
 

 

 

 

 

 

 

 

W = axial load 

 
D = mean coil diameter 

 
d = diameter of spring wire 

n = number of active coils 

C = spring index = D / d For circular wires 

l = length of spring wire 

G = modulus of rigidity 

x = deflection of spring 

q = Angle of twist 

when the spring is being subjected to an axial load to the wire of the spring gets be twisted like a shaft. 

 
If q is the total angle of twist along the wire and x is the deflection of spring under the action of load W along the axis of 
the coil, so that 

 

x = D / 2 . θ 

 

again l = π D n [ consider ,one half turn of a close coiled helical spring ] 

 

 
Assumptions: (1) The Bending & shear effects may be neglected 

 
(2) For the purpose of derivation of formula, the helix angle is considered to be so small that it may be 

neglected. 
 

Any one coil of a such a spring will be assumed to lie in a plane which is nearly ⊥r 
to the axis of the spring. This requires 

that adjoining coils be close together. With this limitation, a section taken perpendicular to the axis the spring rod becomes 
nearly vertical. Hence to maintain equilibrium of a segment of the spring, only a shearing force V = F and Torque T = F. r 

are required at any X 1 section. In the analysis of springs it is customary to assume that the shearing stresses caused by 
the direct shear force is uniformly distributed and is negligible 

 
so applying the torsion formula. 

Using the torsion formula i.e 



 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

SPRING DEFLECTION 

 

 
Spring striffness: The stiffness is defined as the load per unit deflection therefore 

 

 
Shear stress 

 

 
WAHL'S FACTOR : 

 
In order to take into account the effect of direct shear and change in coil curvature a stress factor is defined, which is 
known as Wahl's factor 

 

K = Wahl' s factor and is defined as   

Where C = spring index 

 

= D/d 

 



 

 

 

 

if we take int account thWahl's f actor than the formula for the shear stres becomes  



 

 

 

 

 

 

 

 

 

 

 

 
Strain Energy : The strain energy is defined as the energy which is stored within a material when the work has been 

done on the material. 

 
In the case of a spring the strain energy would be due to bending and the strain energy due to bending is given by the 
expansion 

 

 
Example: A close coiled helical spr ing is to carry a load of 5000N with a deflection of 50 mm and a maximum 

shearing stress of 400 N/mm
2 

.if the number of active turns or active coils is 8.Esti mate the following: 

 
(i) wire diameter 

 
(ii) mean coil diameter 

 
(iii) weight of the spring. 

 

Assume G = 83,000 N/mm
2 

; ρ = 7 700 kg/m
3
 

solution : 

 
(i) for wire diametre if W is the axial load, then 

 

 
Futher, deflection is given as 

 



 

 

 

 

 

 

 

 

 

 

 

 
Therefore, 

3 

D = .0314 x (13.317) mm 
 

=74.15mm 

D = 74.15 mm 

Weight 

 

 

Close coiled helical spring sub jected to axial torque T or axial couple. 

 

 

In this case the material of the sprin g is subjected to pure bending which tends to reduce Ra ius R of the coils. In this 
case the bending moment is constant through out the spring and is equal to the applied axial Torque T. The stresses i.e. 
maximu m bending stress may thus be determined from the bending 

 
 
 
 
 
 

 

theory. 
 

Deflection or wind up angle: 

 
Under the action of an axial torque the deflection of the spring becomes the 1wind 1 up1 angle of the spring which is the 
angle through which one end turns relative to the other. This will be equal to the total change of slope along the wire, acc 
ording to area 1 moment theorem 



 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Springs in Series: If two springs of different stiffness are joined end on and carry a common load W, they are said to 
be connected in series a nd the combined stiffness and deflection are given by the following equation. 

 

 

Springs in parallel: If the two sprin g are joined in such a way that they have a common defl ection 1x' ; then they are 

said to be connected in parallel.In this care the load carried is shared between the t wo springs and total load W  = W 1 + 
W2 

 



 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Members Subjected to Combined Loads 

 
Combined Bending & Twisting : In some applications the shaft are simultaneously subject d to bending moment M 
and Torque T.The Bending moment comes on the shaft due to gravity or Inertia lo ads. So the stresses are set up due 
to bending moment and Torque. 

 
For design purposes it is necessary to find the principal stresses, maximum shear stress, whichever is used as a criterion 
of failure. 

 
 

 
From the simple bending theory equation 

 

If σb is the maximum bending stres ses due to bending. 



 

 

 

 

max 

 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

For the case of circular shafts y 
m
 1 equal to d/2 since y is the distance from the neutral axis. 

 
 
 
 
 
 
 
 

I is the moment of inertia for circular shafts 

I = d
4 

/64 

 
Hence then, the maximum bending stresses developed due to the application of bending mo ment M is 

 
 
 
 
 
 
 

 
From the torsion theory, the maximum shear stress on the surface of the shaft is given by the torsion equation 

 
 
 
 
 
 

 
Where τ' is the shear stress at any radius r but when the maximum value is desired the value of r should be maximum and 
the value of r is maximum at r = d/2 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The nature of the shear stress distribution is shown below : 

 

 
This can now be treated as the two 1 dimensional stress system in which the loading in a ve rtical plane in zero i.e. σ y = 0 
and σ x = σ b and is shown below : 

 

 
Thus, the principle stresses may be obtained as 



 

 

 

 

 

 

 

 

 

 

 

 

 
 

Equivalent Bending Moment : 

 

Now let us define the term the equivalent bending moment which acting alone, will produce t he same maximum principal stress or bendin 

g stress.Let Me be the equivalent bending moment, then due to bending 

where is defined as the equivalent torque, which acting alone would produce the same maximum shear stress 

as produced by the pure torsion 

 

Thus,  

Composite shafts: (in series) 

 
If two or more shaft of different material, diameter or basic forms are connected together in s uch a way that each 
carries the same torque, then the shafts are said to be connected in series & the compo site shaft so produced is 
therefore termed as series 1 connected. 

 

 
Here in this case the equilibrium of the shaft requires that the torque 1T' be the same throug h out both the parts. 

 
In such cases the composite shaft strength is treated by considering each component shaft separately, applying the 
torsion 1 theory to eac h in turn. The composite shaft will therefore be as weak as its weakest component. If relative 
dimensions o f the various parts are required then a solution is usually effected by equating the torque in each shaft e 
.g. for two shafts in series 

 

 

In some applications it is convenien t to ensure that the angle of twist in each shaft are equal i.e. θ1 = θ2 , so 

that for similar materials in each shaft  



 

 

 

 

The total angle of twist at the free end must be the sum of angles θ1 = θ2 over each x - sectio n 

 
Composite shaft parallel connec tion: If two or more shafts are rigidly fixed together such t hat the applied torque is shared between them 

the n the composite shaft so formed is sad to be connected in parallel. 



 

 

 

 

 

 

 

 

 

 

 

 

 
 

For parallel connection. 

Total Torque T = T1 + T2 

In this case the angle of twist for ea ch portion are equal and  

for equal lengths(as is normaly the case for parallel shafts)  

This type of configuration is statically indeterminate, because we do not know how the applied torque is apportioned to 
each segment, To deal such type of problem the procedure is exactly the same as we have discussed earlier, 

 
Thus two equations are obtained in terms of the torques in each part of the composite shaft a nd the maximun 
shear stress in each part can then be found from the relations. 

 

 
Combined bending, Torsion and Axial thrust: 

 
Sometimes, a shaft may be subjected to a combined bending, torsion and axial thrust. This ty pe of situation arises in 
turbine propeller shaft 

 
If P = Thrust load 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Then σ d = P / A (stress due to thrust) 

 
where σd is the direct stress depending on the whether the steam is tensile on the whether the stress is tensile or 
compressive 

 
This type of problem may be analyzed as discussed in earlier case. 

 
Shaft couplings: In shaft couplings, the bolts fail in shear. In this case the torque capacity of the coupling may be 
determined in the following manner 

 
Assumptions: 

 

The shearing stress in any bolt is assumed to be uniform and is governed by the distance from its center to the centre of 
coupling. 



 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

Thus, the torque capacity of the co upling is given as 

where 

db = diameter of bolt 

 

τ'b = maximum shear stress in bolt 

n = no. of bolts 

r = distance from center of bolt to center of coupling 

 
THEORIES OF ELASTIC FAILUR E 

 

While dealing with the design of structures or machine elements or any component of a particular machine the 
physical properties or chief characteristics of the constituent materials are usually found from the results of laboratory 
experimen ts in which the components are subject to the simple stress conditions. The most usual test is a simple ten sile 
test in which the value of stress at yield or fracture is e asily determined. 



 

 

 

 

 

 

 

 

 

 

 
However, a machine part is generally subjected simultaneously to several different types of stresses whose 

actions are combined therefore, it is necessary to have some basis for determining the allowable working stresses so 
that failure may not occur. Thus, the function of the theories of elastic failure is to predict from the behavior of materials 
in a simple tensile test when elastic failure will occur under any conditions of applied stress. 

 
A number of theories have been proposed for the brittle and ductile materials. 

 
Strain Energy: The concept of strain energy is of fundamental importance in applied mechanics. The application of the 

load produces strain in the bar. The effect of these strains is to increase the energy level of the bar itself. Hence a new 
quantity called strain energy is defined as the energy absorbed by the bar during the loading process. This strain energy 
is defined as the work done by load provided no energy is added or subtracted in the form of heat. Some times strain 
energy is referred to as internal work to distinguish it from external work 1W'. Consider a simple bar which is subjected to 
tensile force F, having a small element of dimensions dx, dy and dz. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The strain energy U is the area covered under the triangle 



 

 

 

 

 

 

 

 

 

 

 

 

 
 

A three dimension state of stress re spresented by σ1, σ2 and σ3 may be throught of consistin g of two distinct state of 
stresses i.e Distortional state of stress 

 
Deviatoric state of stress and dilatio nal state of stress 

Hydrostatic state of stresses. 

 
 

Thus, The energy which is stored w ithin a material when the material is deformed is termed a s a strain energy. 
The total strain energy Ur 

 
UT = Ud+UH 

 
Ud is the strain energy due to the Deviatoric state of stress and UH is the strain energy due to the Hydrostatic state of 
stress. Futher, it may be no ted that the hydrostatic state of stress results in change of volume whereas the deviatoric 
state of stress results in change of shape. 

 
Different Theories of Failure : Th ese are five different theories of failures which are generally used 

 
(iii) Maximum Principal stress theo ry ( due to Rankine ) 

 
(iv) Maximum shear stress theory ( Guest - Tresca ) 

 
(v) Maximum Principal strain ( Saint - venant ) Theory 



 

 

 

 

 

 

 

 

 

 
 

• Total strain energy per unit volu me ( Haigh ) Theory 

 
• Shear strain energy per unit volume Theory ( Von 1 Mises & Hencky ) 

In all these theories we shall assum e. 

σYp = stress at the yield point in the simple tensile test. 

 

σ1, 2, 3 − the three principal stre sses in the three dimensional complex state of stress systems in order of magnitude. 

 
(a) Maximum Principal stress theory : 

 
This theory assume that when the maximum principal stress in a complex stress system reaches the elastic limit stress in 
a simple tension, failu re will occur. 

 
Therefore the criterion for failure w ould be 

 
σ1 = σyp 

 

For a two dimensional complex stre ss system σ1 is expressed as 
 

 

Where σx, σy and τxy are the stress es in the any given complex stress system. 

 
(b) Maximum shear stress theory: 

 
This theory states that teh failure c an be assumed to occur when the maximum shear stress in the complex stress 
system is equal to the value of maximum shear stress in simple tension. 

 
The criterion for the failure may be established as given below : 



 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

For a simple tension case 

 



 

 

 

 

 

 

 

 

 

 

 

 

 
(c) Maximum Principal strain the ory : 

 
This Theory assumes that failure o ccurs when the maximum strain for a complex state of stre ss system becomes 
equals to the strain at yield point in the tensile test for the three dimensional compl ex state of stress system. 

 
For a 3 - dimensional state of stres s system the total strain energy Ut per unit volume in equal to the total work done 
by the system and given by the equation 

 

 
(d) Total strain energy per unit v olume theory : 

 
The theory assumes that the failure occurs when the total strain energy for a complex state of stress system is equal to 
that at the yield point a tensile test. 

 
 
 
 
 

Therefore, the failure criterion becomes 

 
It may be noted that this theory giv es fair by good results for ductile materials. 

 
(e) Maximum shear strain energy per unit volume theory : 

 
This theory states that the failure o ccurs when the maximum shear strain energy component for the complex state of 
stress system is equal to that at the yield point in the tensile test. 

 
 
 
 
 

 
Hence the criterion for the failure becomes 

 
As we know that a general state of stress can be broken into two components i.e, 



 

 

 

 

 

 

 

 

 

 

 

 
• Hydrostatic state of stress ( the strain energy associated with the hydrostatic state of stress is known as the 
volumetric strain energy ) 

 
• Distortional or Deviatoric state of stress ( The strain energy due to this is known as the sh ear strain energy ) 

As we know that the strain energy due to distortion is given as 

 
 
 
 

This is the distortion strain energy for a complex state of stress, this is to be equaled to the maximum distortion energy 
in the simple tension test. In order to get we may assume that one of the principal stress say ( 1 ) reaches the yield 

point ( σyp ) of the material. Thus, putting in above equation σ2 = σ3 = 0 we get distortion energy for the simple test i.e 



 

 

 

 

 
 
 
 

 

Chapter 2 

 
COLUMNS AND STRUTS  

Elastic Stability Of Columns 

 
Introduction: 

 
Structural members which carry co mpressive loads may be divided into two broad categories depending 
on their relative lengths and cross-sectional dimensions. 

 
Columns: 

 
Short, thick members are generally termed columns and these usually fail by crushing when the yield stress 
of the material in compression is exceeded. 

 
Struts: 

 
Long, slender columns are generally termed as struts, they fail by buckling some time before the yield 
stress in compression is reached. The bucckling occurs owing to one the following reasons. 

 
(a). the strut may not be perfectly straight initially. 

 
(b). the load may not be applied ex actly along the axis of the Strut. 

 
(c). one part of the material may yie ld in compression more readily than others owing to som e lack 
of uniformity in the material properties through out the strut. 

 
In all the problems considered so fa r we have assumed that the deformation to be both progressive  
with increasing load and simple in form i.e. we assumed that a member in simple tension or 
compression becomes progressively longer or sh orter but remains straight. Under some circumstances 
however, our assumptions of progressive and sim ple deformation may no longer hold good and the 
memb er become unstable. The term strut and column are widely used, often interchangeably in the 
context of buckling of slender members.] 



 

 

 

 

 
 
 
 

At values of load below the bucklin g load a strut will be in stable equilibrium where the displacement caused 
by any lateral disturbance will be totally recovered when the disturbance is removed. At the buckling load the 
strut is said to be in a state of neutral equilibrium, and theoretically it should than be possible to gently 
deflect the strut into a simple sine w ave provided that the amplitude of wave is kept small. 

 
Theoretically, it is possible for strut s to achieve a condition of unstable equilibrium with loads exceeding the 
buckling load, any slight lateral disturbance then causing failure by buckling, this condition is never achieved 
in practice under static load conditi ons. Buckling occurs immediately at the point where the buckling load is 
reached, owing to the reasons stat ed earlier. 

 
The resistance of any member to bending is determined by its flexural rigidity EI and is The quantity I 

may be written as I = Ak
2
, 

Where I = area of moment of inertia 

A = area of the cross-section 

k = radius of gyration. 

 
The load per unit area which the m ember can withstand is therefore related to k. There will b e two 
principal moments of inertia, if the least of these is taken then the ratio 

 
 
 
 

 
Is called the slenderness ratio. It's numerical value indicates whether the member falls into the class of 
columns or struts. 

 
Euler's Theory : The struts which fail by buckling can be analyzed by Euler's theory. In the f 
ollowing sections, different cases of the struts have been analyzed. 

 
Case A: Strut with pinned ends: 

 
Consider an axially loaded strut, shown below, and is subjected to an axial load 1P' this load 1P' produces 
a deflection 1y' at a distance 1x' fr om one end. 

 
Assume that the ends are either pin jointed or rounded so that there is no moment at either end. 

 

 
Assumption: 

 
The strut is assumed to be initially straight, the end load being applied axially through centroid. 



 

 

 

 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 

In this equation 1M' is not a function 1x'. Therefore this equation can not be integrated directly as has been 
done in the case of deflection of beams by integration method. 

 
 
 
 
 

 
Though this equation is in 1y' but we can't say at this stage where the deflection would be maximum or 
minimum. 

 

So the above differential equation can be arranged in the following form                                    

Let us define a operator 

 

D = d/dx 

 

(D
2 

+ n
2
) y =0 where n

2 
= P/EI 

 
This is a second order differential equation which has a solution of the form consisting of com plimentary 
function and particular integral but for the time being we are interested in the complementary solution only[in 
this P.I = 0; since the R.H.S of Diff. equation = 0] 

 
Thus y = A cos (nx) + B sin (nx) 

Where A and B are some constantss. 

 
 

Therefore 

 
In order to evaluate the constants A and B let us apply the boundary conditions, 



 

 

 

 

 
 

 
• at x = 0; y = 0 

 
• at x = L ; y = 0 

 
Applying the first boundary condition yields A = 0. 

Applying the second boundary con dition gives 

 
From the above relationship the lea st value of P which will cause the strut to buckle, and it is called 
the 1 Euler Crippling Load 1 Pe from which w obtain. 

 

 
The interpretation of the above analysis is that for all the values of the load P, other than thos e which 
make sin nL = 0; the strut will remain perfectly straight since 

 
y = B sin nL = 0 

 
For the particular value of 

 

 
Then we say that the strut is in a state of neutral equilibrium, and theoretically any deflection which it suffers 
will be maintained. This is subjected to the limitation that 1L' remains sensibly constant and in practice slight 
increase in load at the critical value will cause the deflection to increase appreciably until the material fails by 
yielding. 



 

 

 

 

 
 
 
 

Further it should be noted that the deflection is not proportional to load, and this applies to all strut problems; 
likewise it will be found that the maximum stress is not proportional to load. 

 
The solution chosen of nL = π is just one particular solution; the solutions nL= 2π, 3π, 5π etc are equally 
valid mathematically and they do, i nfact, produce values of 1Pe' which are equally valid for modes of 
buckling of strut different from that of a simple bow. Theoretically therefore, there are an infinite number of 
values of Pe , each corresponding with a different mode of buckling. 

 
The value selected above is so called the fundamental mode value and is the lowest critical load producing 
the single bow buckling condition. 

 

The solution nL = 2π produces buc kling in two half 1 waves, 3π in three half-waves etc. 

 

 
 
 
 
 
 

 
If load is applied sufficiently quickly to the strut, then it is possible to pass through the fundam ental 
mode and to achieve at least one of the other modes which are theoretically possible. In practical lo 
ading situations, however, this is rarely acchieved since the high stress associated with the first critic al 
condition generally ensures immediate collap se. 

 
struts and columns with other en d conditions: Let us consider the struts and columns ha ving different 

end conditions 



 

 

 

 

 
 

 
Case b: One end fixed and the other free: 

 

 
writing down the value of bending m oment at the point C 

 

 

Hence in operator form, the differen tial equation reduces to ( D
2 

+ n
2 

) y = n
2
a 

 
The solution of the above equation would consist of complementary solution and particular s 
olution, therefore 

 
ygen = A cos(nx) + sin(nx) + P. I 

where 

P.I = the P.I is a particular value of y which satisfies the differential equation 

Hence yP.I = a 

Therefore the complete solution becomes 

Y = A cos(nx) + B sin(nx) + a 

Now imposing the boundary conditions to evaluate the constants A and B 

 
• at x = 0; y = 0 

This yields A = -a 

• at x = 0;  dy/dx = 

0 This yields B = 0 



 

 

 

 

 
 

 
Hence 

 

y = −a cos(nx) + a 

Futher, at x = L; y = a 

 
Therefore a = - a cos(nx) + a or 0 = cos(nL) 

 
Now the fundamental mode of buck ling in this case would be 

 

 
Case 3 

 
Strut with fixed ends: 

 

 
Due to the fixed end supports bending moment would also appears at the supports, since thi s is the 
property of the support. 

 
Bending Moment at point C = M 1 P.y 



 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Thus, 

 
Case                                    4 One end 

fixed, the other pinned 



 

 

 

 

 
 
 
 

 
 

In order to maintain the pin-joint on the horizontal axis of the unloaded strut, it is necessary in this case to 
introduce a vertical load F at the pi n. The moment of F about the built in end then balances th e fixing 
moment. 

 
With the origin at the built in end, th e B,M at C is given as 

 

 
Also when x = L ; y = 0 

Therefore 

nL Cos nL = Sin nL or tan nL = nL 



 

 

 

 

 
 
 
 

The lowest value of nL ( neglecting zero) which satisfies this condition and which therefore produces the 
fundamental buckling condition is nL = 4.49radian 

 

 
Equivalent Strut Length: 

 
Having derived the results for the buckling load of a strut with pinned ends the Euler loads for other end 
conditions may all be written in the same form. 

 

 
Where L is the equivalent length of the strut and can be related to the actual length of the str ut depending 
on the end conditions. 

 
The equivalent length is found to b e the length of a simple bow(half sine wave) in each of the strut 
deflection curves shown. The buckling load for each end condition shown is then readily obtained. The use 
of equivalent length is not restricted to the Euler's theory and it will be used in other derivations later. 

 
The critical load for columns with other end conditions can be expressed in terms of the critical load for 
a hinged column, which is taken as a fundamental case. 

 
For case(c) see the figure, the column or strut has inflection points at quarter points of its unsupported 
length. Since the bending moment is zero at a point of inflection, the freebody diagram would indicates that 
the middle half of the fixed ended is equivalent to a hinged column having an effective length Le = L / 2. 

 
The four different cases which we h ave considered so far are: 

 
(a) Both ends pinned (c) One end fixed, other free 

 
(b) Both ends fixed (d) On e end fixed and other pinned 



 

 

 

 

 
 
 
 

 
 

Comparison of Euler Theory with Experiment results 

 
Limitations of Euler's Theory : 

 
In practice the ideal conditions are never [ i.e. the strut is initially straight and the en d  load 

being applied axially through centroid] rea ched. There is always some eccentricity and initial curvature 
present. These factors needs to be accommodated in the required formula's. 

 
It is realized that, due to the above mentioned imperfections the strut will suffer a deflection which 

increases with load and consequently a bending moment is introduced which causes failure before the 
Euler's load is reached. Infact failure is by stress rather than by buckling and the deviation from the Euler 
value is more marked as the slende rness-ratio l/k is reduced. For values of l/k < 120 approx, the error in 
applying the Euler theory is too great to allow of its use. The stress to cause buckling from the Euler formula 
for the pin ended strut is 

 

 

A plot of σe versus l / k ratio is shown by the curve ABC. 



 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

 
 

Allowing for the imperfections of loa ding and strut, actual values at failure must lie within and below line 
CBD. 

 
Other formulae have therefore bee n derived to attempt to obtain closer agreement between the actual 
failing load and the predicted value in this particular range of slenderness ratio i.e.l/k=40 to l/k=100. 

 
(a) Straight line formulae : 

 
The permissible load is given by th e formulae 

 

 Where the v alue of index 1n' depends on the material used and the e nd conditions. 

(b) Johnson parabolic formulae : The Johnson parabolic formulae is defined as 

 

 where the value of index 1b' depends on the end conditions. 

(c) Rankine Gordon Formulae : 

 

 
Where Pe = Euler crippling load 

 
Pc = Crushing load or Yield point lo ad in Compression 

PR = Actual load to cause failure or Rankine load 

Since the Rankine formulae is a combination of the Euler and crushing load for a strut. 

 



 

 

 

 

 

 

 

 
 

For a very short strut Pe is very large hence 1/ P ewould be large so that 1/ P ecan be neglected. 

 
Thus PR = P c , for very large struts, P e is very small so 1/ P e would be large and 1/ P ccan b e 
neglected ,hence PR = Pe 

 
The Rankine formulae is therefore valid for extreme values of 1/k.It is also found to be fairly a ccurate for 
the intermediate values in the range under consideration. Thus rewriting the formula in terms of s tresses, 
we have 

 

 

Where  and the value of 1a' is found by conducting experiments on various materi als. 

Theoretically, but having a value no rmally found by experiment for various materials. This will take 

into account other types of end conditions. 

 

Therefore  

Typical values of 1a' for use in Ran kine formulae are given below in table. 

 

Material σy or c Value of a 

MN/m
2
 

Pinned ends Fixed end s 

Low carbon 315 1/7500 1/30000 
steel 

 



 

 

 

 

 
 
 
 

Cast Iron 540 1/1600 1/64000 

Timber 35 1/3000 1/12000 

 

note a = 4 x (a for fixed ends) 

 
Since the above values of 1a' are not exactly equal to the theoretical values , the R nkine loads for 

long struts will not be identical to those estimated by the Euler theory as estimated. 

 
Strut with initial Curvature : 

 
As we know that the true conditions are never realized , but there are always some imperfections. 

Let us say that the strut is having s ome initial curvature. i.e., it is not perfectly straight before loading. The 
situation will influence the stability. Let us analyze this effect. 

 
by a differential calculus 

 

 
Where 1 y0' is the value of deflectio n before the load is applied to the strut when the load is a pplied to 
the strut the deflection increases to a value 1y'. Hence 



 

 

 

 

 
 
 
 
 

 
 

The initial shape of the strut y0 may be assumed circular, parabolic or sinusoidal without making much 
difference to the final results, but the most convenient form is 

 

  where C is some constant or here it is amplitude 

Which satisfies the end conditions and corresponds to a maximum deviation 1C'. Any other s hape could be 
analyzed into a Fourier series of sin e terms. Then 

 

 
Boundary conditions which are relevant to the problem are 

at x = 0 ; y = 0 thus B = 0 

Again 

 
when x = l ; y = 0 or x = l / 2 ; dy/dx = 0 



 

 

 

 

 
 
 
 

 
the above condition gives B = 0 Therefore the 

complete solution would be 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Since the BM for a pin ended strut at any point is given as 

M = -Py and 

Max BM = P ymax 

 
Now in order to define the absolute value in terms of maximum amplitude let us use the sym ol as 1^'. 



 

 

 

 

 
 
 
 

 
 

Strut with eccentric load 

 

Let 1e' be the eccentricity o f the applied end load, and measuring y from the line of action of the 
load. 

 

 
 
 

Then 

 

or (D
2 

+ n
2
) y = 0 where n

2 
= P / EI 

Therefore ygeneral = ycomplementary 

= Asin nx + Bcos nx 

 
applying the boundary conditions th en we can determine the constants 

 
i.e. at x = 0 ; y = e thus B = e 

at x = l / 2 ; dy / dx = 0 

 
 

Hence the complete solution becomes 



 

 

 

 

 
 

 
y = A sin(nx) + B cos(nx) 

 
substituting the values of A and B w e get 

 

 
Note that with an eccentric load, the strut deflects for all values of P, and not only for the critical 

value as was the case with an axially applied load. The deflection becomes infinite for tan (nl)/2 = ∞ i.e. nl 

= π giving the same crippling load . However, due to additional bending moment s et up 

by deflection, the strut will always fail by compressive stress before Euler load is reached. 

 
Since 

 

 
The second term is obviously due the bending action. 

 
Consider a short strut subjected to an eccentrically applied compressive force P at its upper end. If 

such a strut is comparatively short and stiff, the deflection due to bending action of the eccentric load will be 
neglible compared with eccentricity 1e' and the principal of super-imposition applies. 

 
If the strut is assumed to have a plane of symmetry (the xy - plane) and the load P lies in this plane 

at the distance 1e' from the centroidal axis ox. 

 
Then such a loading may be replaced by its statically equivalent of a centrally applied compr essive force 
1P' and a couple of moment P.e 



 

 

 

 

 
 
 
 
 
 
 
 
 
 

 

 
 

(vii) The centrally  applied  load  P prod  uces  a uniform compressive stress over 

each cross-section as shown by the stress diagram. 

 
(viii) The end moment 1M' produces a linearly varying bending stress   as shown in  

t he figure. 

 
Then by super-impostion, the total compressive stress in any fibre due to 
combined bending and compression becomes, 

 
 
 
 

Comparison of Euler Theory with Experiment results 

Limitations of Euler's Theory : 

In practice the ideal conditions are never [ i.e. the strut is initially straight 

and the end load being applied axially through centroid] reached. There is always 

some eccentricity and initial curvature present. These factors needs to be 

accommodated in the required formula's. 
 

It is realized that, due to the above mentioned imperfections the strut will 

suffer a deflection which increases with load and consequently a bending moment is 

introduced which causes failure before the Euler's load is reached. Infact failure is by 

stress rather than by buckling and the deviation from the Euler value is more marked as 



 

 

 

 

 

 

 

 

the slenderness-ratio l/k is reduced. For values of l/k < 120 approx, the error in applying 

the Euler theory is too great to allow of its use. The stress to cause buckling from the 

Euler formula for the pin ended strut is 



 

 

 

 

 

 

 

 

 
 

 
 

A plot of se versus l / k ratio is shown by the curve ABC. 
 

Allowing for the imperfections of loading and strut, actual values at failure must 

lie within and below line CBD. 

Other formulae have therefore been derived to attempt to obtain closer 

agreement between the actual failing load and the predicted value in this 

particular range of slenderness ratio i.e.l/k=40 to l/k=100. 

(a) Straight – line formulae : 

 

The permissible load is given by the formulae 

 

 

Where the value of index ‘n' depends on the material used and the 

end conditions. 

 

(b) Johnson parabolic formulae : The Johnson parabolic formulae is defined as 

where the value of index ‘b' depends on the end conditions. 



 

 

 

 

 

 

 

 

 

(c) Rankine Gordon Formulae : 
 

Where Pe = Euler crippling load 

 

Pc = Crushing load or Yield point load in Compression 

PR = Actual load to cause failure or Rankine load 

Since the Rankine formulae is a combination of the Euler and crushing load for a strut. 

 

For a very short strut Pe is very large hence 1/ P ewould be large so that 1/ P ecan be 

neglected. 

Thus PR = Pc , for very large struts, P e is very small so 1/ P e would be large and 1/ P 

ccan be neglected ,hence PR = Pe 

 

The Rankine formulae is therefore valid for extreme values of 1/k.It is also found to 

be fairly accurate for the intermediate values in the range under consideration. Thus 

rewriting the formula in terms of stresses, we have 



 

 

 

 

 

 

 

 

 
 

 
 

 

Where and the value of ‘a' is found by conducting experiments on various 

materials. Theoretically, but having a value normally found by experiment for 

various materials. This will take into account other types of end conditions. 

 

Therefore  

Typical values of ‘a' for use in Rankine formulae are given below in table. 

 

Material sy or sc Value of a 

MN/m
2

 Pinned ends Fixed ends 

Low carbon 315 1/7500 1/30000 

steel 

Cast Iron 540 1/1600 1/64000 

Timber 35 1/3000 1/12000 

 

note a = 4 x (a for fixed ends) 

 
Since the above values of ‘a' are not exactly equal to the theoretical values , the 



 

 

 

 

 

 

 

 

 

Rankine loads for long struts will not be identical to those estimated by the Euler 

theory as estimated. 

Strut with initial Curvature : 

 

As we know that the true conditions are never realized , but there are always 

some imperfections. Let us say that the strut is having some initial curvature. i.e., it  

is not perfectly straight before loading. The situation will influence the stability. Let 

us analyze this effect. 

 

by a differential calculus 

 

Where ‘ y0' is the value of deflection before the load is applied to the strut when the 

load is applied to the strut the deflection increases to a value ‘y'. Hence 



 

 

 

 

 

 

 

 

 
 

 
 

The initial shape of the strut y0 may be assumed circular, parabolic or sinusoidal 

without making much difference to the final results, but the most convenient form is 

where C is some constant or here it is amplitude 

Which satisfies the end conditions and corresponds to a maximum deviation ‘C'. 

Any other shape could be analyzed into a Fourier series of sine terms. Then 

 

Boundary conditions which are relevant to the problem are 

at x = 0 ; y = 0 thus B = 0 



 

 

 

 

 

 

 

 

 

Again 

 

when x = l ; y = 0 or x = l / 2 ; dy/dx = 0 

the above condition gives B = 0 

Therefore the complete solution would be 

 
 

Since the BM for a pin ended strut at any point is given 

as M = -Py and 

Max BM = P ymax 



 

 

 

 

 

 

 

 

 

Now in order to define the absolute value in terms of maximum amplitude let us use 

the symbol as ‘^'. 
 

Strut with eccentric load 

 

Let ‘e' be the eccentricity of the applied end load, and measuring y from the 

line of action of the load. 

 

 

 
Then 

or (D
2 

+ n
2
) y = 0 where n

2 
= P / EI 

Therefore ygeneral = ycomplementary 

= Asin nx + Bcos nx 

 

applying the boundary conditions then we can determine the constants i.e. 

at x = 0 ; y = e thus B = e 

at x = l / 2 ; dy / dx = 0 



 

 

 

 

 

 

 

 

 
 

 
 

Hence the complete solution becomes 

y = A sin(nx) + B cos(nx) 

substituting the values of A and B we get 

 

Note that with an eccentric load, the strut deflects for all values of P, and not 

only for the critical value as was the case with an axially applied load. The deflection 

becomes infinite for tan (nl)/2 = ∞ i.e. nl = p giving the same crippling load . 

However, due to additional bending moment set up by deflection, the strut will always 

fail by compressive stress before Euler load is reached. 

Since 



 

 

 

 

 

 

 

 

 
 

 
 

The second term is obviously due the bending action. 

 

Consider a short strut subjected to an eccentrically applied compressive force 

P at its upper end. If such a strut is comparatively short and stiff, the deflection due to 

bending action of the eccentric load will be neglible compared with eccentricity ‘e' and 

the principal of super-imposition applies. 

If the strut is assumed to have a plane of symmetry (the xy - plane) and 

the load P lies in this plane at the distance ‘e' from the centroidal axis ox. 

Then such a loading may be replaced by its statically equivalent of a centrally 

applied compressive force ‘P' and a couple of moment P.e 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The centrally applied load P produces a uniform compressive stress over each cross-section 

as shown by the stress diagram. 

(vi) The end moment ‘M' produces a linearly varying bending as shown in the figure. 

Then by super-impostion, the total compressive stress in any fibre due to combined bending 

and compression becomes, 

 



  

 

 

 

 
 

Chapter 3 

 
BEAM COLUMNS & DIRECT & BENDING STRESSES 

 

 
 

Preamble 

 

Engineering science is usually subdivided into number of topics such as 

 
(vii) Solid Mechanics 

 
(viii) Fluid Mechanics 

(ix)Heat Transfer 

(x) Properties of materials and soon Although there are close links between them in terms of the  
physical principles involved and methods of analysis employed. 

 
The solid mechanics as a subject may be defined as a branch of applied mechanics that deals with 
behaviours of solid bodies subjected to various types of loadings. This is usually subdivided into further two 
streams i.e Mechanics of rigid bodies or simply Mechanics and Mechanics of deformable solids. 

 
The mechanics of deformable solids which is branch of applied mechanics is known by several names i.e. 
strength of materials, mechanics of materials etc. 

 
Mechanics of rigid bodies: 

 
The mechanics of rigid bodies is primarily concerned with the static and dynamic behaviour under external forces of 

engineering components and systems which are treated as  infinitely strong and undeformable Primarily we deal 

here with the forces and motions associated with particles and rigid bodies. 

 
Mechanics of deformable solids : 

Mechanics of solids: 

The mechanics of deformable solids is more concerned with the internal forces and associated changes in 
the geometry of the components involved. Of particular importance are the properties of the materials used, 
the strength of which will determine whether the components fail by breaking in service, and the stiffness of 
which will determine whether the amount of deformation they suffer is acceptable. Therefore, the subject of 
mechanics of materials or strength of materials is central to the whole activity of engineering design. Usually 
the objectives in analysis here will be the determination of the stresses, strains, and deflections produced by 
loads. Theoretical analyses and experimental results have an equal roles in this field. 

 
Analysis of stress and strain : 

 
Concept of stress : Let us introduce the concept of stress as we know that the main problem of 

engineering mechanics of material is the investigation of the internal resistance of the body, i.e. the nature 
of forces set up within a body to balance the effect of the externally applied forces. 

 
The externally applied forces are termed as loads. These externally applied forces may be due to any one of 
the reason. 

 
• due to service conditions 

 
• due to environment in which the component works 



  

 

 

 

 
 

 
• through contact with other mem bers 

 
• due to fluid pressures 

 
• due to gravity or inertia forces. 

 
As we know that in mechanics of d eformable solids, externally applied forces acts on a body and body 
suffers a deformation. From equilibrium point of view, this action should be opposed or react d by internal 
forces which are set up within the particles of material due to cohesion. 

 
These internal forces give rise to a concept of stress. Therefore, let us define a stress Therefore, let us 
define a term stress 

 
Stress: 

 

 
Let us consider a rectangular bar of some cross 1 sectional area and subjected to some load or force (in 
Newtons ) 

 
Let us imagine that the same recta ngular bar is assumed to be cut into two halves at section XX. The each 
portion of this rectangular bar is in equilibrium under the action of load P and the internal forces acting at the 
section XX has been shown 

 

 
Now stress is defined as the force intensity or force per unit area. Here we use a symbol σ to represent 
the stress. 

 
 
 
 

Where A is the area of the X 1 section 



  

 

 

 

 
 
 
 

 
 

Here we are using an assumption that the total force or total load carried by the rectangular b ar is 
uniformly distributed over its cross 1 section. 

 
But the stress distributions may be for from uniform, with local regions of high stress known as stress 
concentrations. 

 
If the force carried by a component is not uniformly distributed over its cross 1 sectional area, A, we must consider a 

small area, 1δA' which c arries a small load δP, of the total force 1P', Then definition of stress is 

 

 
As a particular stress generally hol ds true only at a point, therefore it is defined mathematically as 

 

 
Units : 

The basic units of stress in S.I units i.e. (International system) are N / m
2 

(or Pa) 

MPa = 10
6 

Pa 

GPa = 10
9 

Pa 

KPa = 10
3 

Pa 

Some times N / mm
2 

units are also used, because this is an equivalent to MPa. While US cu stomary unit 
is pound per square inch psi. 

 
TYPES OF STRESSES : 

 

only two basic stresses exists : (1) normal stress and (2) shear shear stress. Other stresses either are   
similar to these basic stresses or ar e a combination of these e.g. bending stress is a combina tion tensile, 
compressive and shear stresses. Torsional stress, as encountered in twisting of a shaft is a shearing stress. 

 
Let us define the normal stresses and shear stresses in the following sections. 

 
Normal stresses : We have defined stress as force per unit area. If the stresses are normal to the areas concerned, 

then these are termed as normal stresses. The normal stresses are generally de noted by a 

Greek letter ( σ ) 



  

 

 

 

 
 
 
 

 
 

This is also known as uniaxial state of stress, because the stresses acts only in one direction however,   
such a state rarely exists, therefore we have biaxial and triaxial state of stresses where either the two 
mutually perpendicular normal stresses acts or three mutually perpendicular normal stresses acts as shown 
in the figures below : 

 

 
Tensile or compressive stresses : 

 
The normal stresses can be either tensile or compressive whether the stresses acts out of the area or into 
the area 

 



  

 

 

 

 
 
 
 
 

Bearing Stress : When one object presses against another, it is referred to a bearing stress ( They are in 
fact the compressive stresses ). 

 

 
Shear stresses : 

 
Let us consider now the situation, w here the cross 1 sectional area of a block of material is subject to a 
distribution of forces which are para llel, rather than normal, to the area concerned. Such forc es are 
associated with a shearing of the m aterial, and are referred to as shear forces. The resulting force 
interistes are known as shear stresses. 

 

 
The resulting force intensities are known as shear stresses, the mean shear stress being equ al to 

 

 
Where P is the total force and A the area over which it acts. 

 
As we know that the particular stresss generally holds good only at a point therefore we can define 
shear stress at a point as 

 

 

The greek symbol τ ( tau ) ( sugges ting tangential ) is used to denote shear stress. 



  

 

 

 

 
 
 

 
However, it must be borne in mind that the stress ( resultant stress ) at any point in a body is basically 

resolved into two components σ and τone acts perpendicular and other parallel to the area concerned, as it 
is clearly defined in the following figure. 

 

 
The single shear takes place on the single plane and the shear area is the cross - sectional of the rivett, 
whereas the double shear takes place in the case of Butt joints of rivetts and the shear area is the twice 
of the X - sectional area of the rivett. 

 
ANALYSIS OF STERSSES 

 
General State of stress at a point : 

 
Stress at a point in a material body has been defined as a force per unit area. But this definition is some 
what ambiguous since it depends upon what area we consider at that point. Let us, consider a point 1q' in 
the interior of the body 

 

 
Let us pass a cutting plane through a pont 'q' perpendicular to the x - axis as shown below 



  

 

 

 

 
 
 
 

 

 

The corresponding force components can be shown like this 

dFx = σxx. dax 

dFy = τxy. dax 

dFz = τxz. dax 

where dax is the area surrounding the point 'q' when the cutting plane ⊥ r is to x - axis. 

In a similar way it can be assummed that the cutting plane is passed through the point 'q' perpendicular to 
the y - axis. The corresponding force components are shown below 

 

 

The corresponding force components may be written 

as dFx = τyx. day 

dFy = σyy. day 

dFz = τyz. day 

where day is the area surrounding the point 'q' when the cutting plane ⊥ r is to y - axis. 

In the last it can be considered that the cutting plane is passed through the point 'q' perpendicular to the z 
- axis. 



  

 

 

 

 
 
 
 

 
 

The corresponding force components may be written as 

 

dFx = τzx. daz 

dFy = τzy. daz 

dFz = σzz. daz 

where daz is the area surrounding the point 'q' when the cutting plane ⊥ r is to z - axis. 

Thus, from the foregoing discussion it is amply clear that there is nothing like stress at a point 'q' rather we 
have a situation where it is a combination of state of stress at a point q. Thus, it becomes imperative to 
understand the term state of stress at a point 'q'. Therefore, it becomes easy to express astate of stress by 
the scheme as discussed earlier, where the stresses on the three mutually perpendiclar planes are labelled 
in the manner as shown earlier. the state of stress as  depicted earlier is called the general  or a triaxial  
state of stress that can exist at any interior point of a loaded body. 

 
Before defining the general state of stress at a point. Let us make overselves conversant with the notations 
for the stresses. 

 
We have already chosen to distinguish between normal and shear stress with the help 

of symbols σ and τ . 
 

Cartesian - co-ordinate system 

 

In the Cartesian co-ordinates system, we make use of the axes, X, Y and Z 

 
Let us consider the small element of the material and show the various normal stresses acting the faces 

 



  

 

 

 

 
 

 

Thus, in the Cartesian co-ordinates system the normal stresses have been represented by σx, σyand σz. 

 
Cylindrical - co-ordinate system 

 

In the Cylindrical - co-ordinate system we make use of co-ordinates r, θ and Z. 

 

 
Thus, in the Cylindrical co-ordinates system, the normal stresses i.e components acting over a element is 

being denoted by σr, σθand σz. 

Sign convention : The tensile forces are termed as ( +ve ) while the compressive forces are termed 

as negative ( -ve ). 

 
First sub script : it indicates the direction of the normal to the surface. 

 
Second subscript : it indicates the direction of the stress. 

 
It may be noted that in the case of normal stresses the double script notation may be dispensed with as the 
direction of the normal stress and the direction of normal to the surface of the element on which it acts is  
the same. Therefore, a single subscript notation as used is sufficient to define the normal stresses. 

 
Shear Stresses : With shear stress components, the single subscript notation is not practical, because 
such stresses are in direction parallel to the surfaces on which they act. We therefore have two directions to 
specify, that of normal to the surface and the stress itself. To do this, we stress itself. To do this, we attach 

two subscripts to the symbol ' τ' , for shear stresses. 

 
In cartesian and polar co-ordinates, we have the stress components as shown in the figures. 

 

τxy , τyx , τyz , τzy , τzx , τxz 

τrθ , τθr , τθz , τzθ ,τzr , τrz 



  

 

 

 

 
 
 
 

 
 

So as shown above, the normal stresses and shear stress components indicated on a small  element 
of material seperately has been combined and depicted on a single element. Similarly for a cylindrical 
co-ordinate system let us shown the normal and shear stresses components separately. 

 

 
Now let us combine the normal and shear stress components as shown below : 



  

 

 

 

 
 
 
 

 
 

Now let us define the state of stress at a point formally. 

 
State of stress at a point : 

 
By state of stress at a point, we mean an information which is required at that point such that it remains 
under equilibrium. or simply a general state of stress at a point involves all the normal stress 
components, together with all the shear stress components as shown in earlier figures. 

 
Therefore, we need nine components, to define the state of stress at a point 

 
σx τxy τxz 

σy τyx τyz 

σz τzx τzy 

If we apply the conditions of equilibrium which are as follows: 

 
∑ Fx = 0 ; ∑ M x = 0 

∑ Fy = 0 ; ∑ M y = 0 

 
∑ Fz = 0 ; ∑ M z = 0 

Then we get 

 

τxy = τyx 

τyz = τzy 

τzx = τxy 

Then we will need only six components to specify the state of stress at a point i.e 

 
σx , σy, σz , τxy , τyz , τzx 



  

 

 

 

 
 

 
Now let us define the concept of complementary shear stresses. 

 
Complementary shear stresses: 

 
The existence of shear stresses on any two sides of the element induces complementary shear stresses 
on the other two sides of the element to maintain equilibrium. 

 

 
on planes AB and CD, the shear stress τ acts. To maintain the static equilibrium of this element, on planes 

AD and BC, τ' should act, we shall see that τ' which is known as the complementary shear stress would 
come out to equal and opposite to the . Let us prove this thing for a general case as discussed below: 

 

 
The figure shows a small rectangular element with sides of length x, y parallel to x and y directions. Its 
thickness normal to the plane of paper is z in z 1 direction. All nine normal and shear stress components 
may act on the element, only those in x and y directions are shown. 

 
Sign convections for shear stresses: 

 
Direct stresses or normal stresses 

 
=tensile +ve 

 
=compressive 1ve 

 
Shear stresses: 

 
=tending to turn the element C.W +ve. 

 
=tending to turn the element C.C.W 1 ve. 



  

 

 

 

 
 
 
 

The resulting forces applied to the element are in equilibrium in x and y direction. ( Although other normal 
and shear stress components are n ot shown, their presence does not affect the final conclusion ). 

 
Assumption : The weight of the el ement is neglected. 

 
Since the element is a static piece of solid body, the moments applied to it must also be in eq uilibrium.  
Let 1O' be the centre of the element. Let us consider the axis through the point 1O'. the resultant force 

associated with normal stresses σx and σy acting on the sides of the element each pass throu gh this axis, 
and therefore, have no moment. 

 
Now forces on top and bottom surf aces produce a couple which must be balanced by the for ces on left 
and right hand faces 

 
Thus, 

 
τyx . x . z . y = τxy . x . z . y 

 

 
In other word, the complementary s hear stresses are equal in magnitude. The same form of r elationship 
can be obtained for the other two pair of shear stress components to arrive at the relations 

 

 

Analysis of Stresses: 

 

 
Consider a point 1q' in some sort of structural member like as shown in figure below. Assuming that at point 
exist. 1q' a plane state of stress exist. i.e. the state of state stress is to describe by a 



  

 

 

 

 
 

 

parameters σx, σy and τxy These stresses could be indicate a on the two dimensional diagram as shown 
below: 

 

 
This is a commen way of representing the stresses. It must be realize a that the material is unaware of 

what we have called the x and y axes. i.e. the material has to resist the loads irrespective less of how we 

wish to name them or whether they are horizontal, vertical or otherwise further more, the material will fail 

when the stresses exceed beyond a permissible value. Thus, a fundamental problem in engineering design 

is to determine the maximum normal stress or maximum shear stress at any particular point in a body. 

There is no reason to believe apriori that σx, σy and τxy are the maximum value. Rather the maximum 

stresses may associates themselves with some other planes located at 1θ'. Thus, it becomes imperative to 
determine the values of σθ and θ. In order tto achieve this let us consider the following. 

Shear stress: 

 

 
If the applied load P consists of two equal and opposite parallel forces not in the same line, than there is a 
tendency for one part of the body to slide over or shear from the other part across any section LM. If the 

cross section at LM measured parallel to the load is A, then the average value of shear stress τ = P/A . The 
shear stress is tangential to the area over which it acts. 



  

 

 

 

 τ = τ'  

 
 
 
 

 

If the shear stress varies then at a point then τ may be defined as 

 

Complementary shear stress:  

 

Let ABCD be a small rectangular element of sides x, y and z perpendicular to the plane of paper let there be 
shear stress acting on planes AB and CD 

 
It is obvious that these stresses will from a couple ( τ . xz )y which can only be balanced by t ngential forces 
on planes AD and BC. These are known as complementary shear stresses. i.e. the existence of shear 
stresses on sides AB and CD of the element implies that there must also be complementary shear stresses 
on to maintain equilibrium. 

 
Let τ' be the complementary shear stress induced on planes 

AD and BC. Then for the equilibriu m ( . xz )y = τ' ( yz )x 

 
 

 

Thus, every shear stress is accomp anied by an equal complementary shear stress. 

 
Stresses on oblique plane: Till no w we have dealt with either pure normal direct stress or pure shear 

stress. In many instances, however both direct and shear stresses acts and the resultant stress across any 
section will be neither normal nor ta ngential to the plane. 

 
A plane stse of stress is a 2 dimens ional stae of stress in a sense that the stress components in 
one direction are all zero i.e 

 
σz = τyz = τzx = 0 

 
examples of plane state of stress in cludes plates and shells. 

 

Consider the general case of a bar under direct load F giving rise to a stress σy vertically 



  

 

 

 

 
 
 
 

 
 

The stress acting at a point is represented by the stresses acting on the faces of the element enclosing the 
point. 

 
The stresses change with the inclination of the planes passing through that point i.e. the stre ss on the 
faces of the element vary as the angular position of the element changes. 

 
Let the block be of unit depth now c onsidering the equilibrium of forces on the triangle portion ABC 

Resolving forces perpendicular to B C, gives 

σθ.BC.1 = σysinθ . AB . 1 

but AB/BC = sinθ or AB = BCsinθ 

 

Substituting this value in the above equation, we get 

 

 
σθ.BC.1 = σysinθ . BCsinθ . 1 or (1) 

 
Now resolving the forces parallell to BC 

 

τθ.BC.1 = σy cosθ . ABsinθ . 1 

again AB = BCcosθ 

τθ.BC.1 = σycosθ . BCsinθ . 1 or θ = σysinθcosθ 

 

                  (2) 

If θ = 90
0 

the BC will be parallel to AB and τθ = 0, i.e. there will be only direct stress or normal stress. 

By examining the equations (1) and (2), the following conclusions may be drawn 



  

 

 

 

 
 

 

(iii) The value of direct stress σθ is maximum and is equal to σy when θ = 90
0
. 

(iv) The shear stress τθ has a maximum value of 0.5 σy when θ = 45
0
 

(v) The stresses σθ and σθ are not simply the resolution of σy 

 
Material subjected to pure shear: 

 
Consider the element shown to which shear stresses have been applied to the sides AB and DC 

 

 
Complementary shear stresses of equal value but of opposite effect are then set up on the sides AD and  
BC in order to prevent the rotation of the element. Since the applied and complementary shear stresses are 

of equal value on the x and y planes. Therefore, they are both represented by the symbol τxy. 

 
Now consider the equilibrium of portion of PBC 

 

 

Assuming unit depth and resolving normal to PC or in the direction of σθ 

 

σθ.PC.1 = xy.PB.cosθ.1+ xy.BC.sinθ.1 
 

= τxy.PB.cosθ + τxy.BC.sinθ 

 

Now writing PB and BC in terms of PC so that it cancels out from the two sides 

 

PB/PC = sinθ BC/PC = cosθ 

σθ.PC.1 = τxy.cosθsinθPC+ τxy.cosθ.sinθPC 



  

 

 

 

. PB.sin 

 
 
 

 

σθ = 2τxysinθcosθ 

σθ = τxy.2.sinθcosθ 

        (1) 

 

Now resolving forces parallel to PC or in the direction τθ.then τxyPC . 1 = xy . PBsinθ − τxy . B Ccosθ 

−ve sign has been put because this component is in the same direction as that of τθ. 

again converting the various quantities in terms of PC we have 

τxyPC . 1 = xy 
2θ − τxy . PCcos

2θ 

= −[ xy (cos
2θ sin

2θ) ] 

 
 

= −τxycos2 or (2) 

the negative sign means that the se nse of τθ is opposite to that of assumed one. Let us examine 
the equations (1) and (2) respectively 

 
From equation (1) i.e, 

 

σθ = τxy sin2θ 

The equation (1) represents that th e maximum value of σθ is xy when θ = 45
0
. 

Let us take into consideration the equation (2) which states that 

 

τθ = τxy cos2θ 

It indicates that the maximum value of τθ is xy when θ = 0
0 

or 90
0
. it has a value zero when θ = 45

0
. 

From equation (1) it may be noticed that the normal component σθ has maximum and minimu m values 

of +τxy (tension) and −τxy(compression ) on plane at ± 45
0 

to the applied shear and on these plan es the 

tangential component τθ is zero. 

 
Hence the system of pure shear stresses produces and equivalent direct stress system, one set 

compressive and one tensile each located at 45
0 

to the original shear directions as depicted in the 
figure below: 



  

 

 

 

 
 
 
 

 
 

Material subjected to two mutually perpendicular direct stresses: 

 

Now consider a rectangular element of unit depth, subjected to a system of two direct stresses 

both tensile, σx and σyacting right angles to each other. 
 

 
for equilibrium of the portion ABC, resolving perpendicular to AC 



  

 

 

 

 
 
 

σθ . AC.1 = σy sin θ . AB.1 + σx cos θ . BC.1 

 
converting AB and BC in terms of A C so that AC cancels out from the sides 

 

σθ = σy sin
2θ + σxcos

2θ 

Futher, recalling that cos
2θ sin

2θ = cos2θ or (1 − cos2θ)/2 = sin
2θ 

Similarly (1 + cos2θ)/2 = cos
2
q 

Hence by these transformations the expression for σθ reduces to 
 

= 1/2σy (1 − cos2θ) + 1/2σx (1 + cos 2θ) 

 
On rearranging the various terms w e get 

 
 
 
 

(3) 

 
Now resolving parallal to AC 

 

sq.AC.1= −τxy..cosθ.AB.1+ xy.BC.s inθ.1 

 
The 1 ve sign appears because this component is in the same direction as that of AC. 

 
Again converting the various quantities in terms of AC so that the AC cancels out from the two sides. 

 
 
 
 
 
 
 
 
 

(4) 

 
Conclusions : 

 
The following conclusions may be d rawn from equation (3) and (4) 

 

(f) The maximum direct stress wo uld be equal to σx or σy which ever is the greater, when θ = 0
0 

or 90
0
 

(g) The maximum shear stress in t he plane of the applied stresses occurs when = 45
0
 

 
 

 
Material subjected to combined direct and shear stresses: 

 
Now consider a complex stress system shown below, acting on an element of material. 



  

 

 

 

 
 

 

The stresses σx and σy may be com pressive or tensile and may be the result of direct forces or as a result 
of bending.The shear stresses may b e as shown or completely reversed and occur as a result o f either 
shear force or torsion as shown in the figu re below: 

 

 
As per the double subscript notatio n the shear stress on the face BC should be notified as τyx , however, 
we have already seen that for a pair of shear stresses there is a set of complementary shear stre sses 

generated such that τyx = τxy 

 
By looking at this state of stress, it may be observed that this state of stress is combination of two different 
cases: 

 
(i) Material subjected to pure stae o f stress shear. In this case the various formulas deserved are as follows 

 

σθ = τyx sin2

τθ = − τyx cos 2


(ii) Material subjected to two mutually perpendicular direct stresses. In this case the various formula's 
derived are as follows. 

 

 
To get the required equations for the case under consideration,let us add the respective equ ations for 
the above two cases such that 



  

 

 

 

 
 
 
 

 
 

These are the equilibrium equation s for stresses at a point. They do not depend on material proportions 
and are equally valid for elastic and inelastic behaviour 

 

This eqn gives two values of 2θ that differ by 180
0 

.Hence the planes on which maximum and 

minimum normal stresses occurate 90
0 

apart. 
 

From the triangle it may be determined 

 

 
Substituting the values of cos2 and sin2 in equation (5) we get 



  

 

 

 

 
 
 
 
 

 
 

This shows that the values oshear stress is zero on the principal planes. 

 
Hence the maximum and minimum values of normal stresses occur on planes  of zero  sheari ng stress.  
The maximum and minimum normal str esses are called the principal stresses, and the planes on which 
they act are called principal plane the soluti on of equation 

 

 

will yield two values of 2θ separate d by 180
0 

i.e. two values of θ separated by 90
0 

.Thus the two 
principal stresses occur on mutually perpend icular planes termed principal planes. 



  

 

 

 

 
 
 
 

Therefore the two 1 dimensional c omplex stress system can now be reduced to the equivalent system 
of principal stresses. 

 

 
Let us recall that for the case of a m aterial subjected to direct stresses the value of maximum shear stresses 

 

 
Therefore,it can be concluded that the equation (2) is a negative reciprocal of equation (1) hence the roots 

for the double angle of equation (2) are 90
0 

away from the corresponding angle of equation ( 1). 



  

 

 

 

 
 
 

This means that the angles that an gles that locate the plane of maximum or minimum sheari g 

stresses form angles of 45
0 

with the planes of principal stresses. 

Futher, by making the triangle we get 

 

 
Because of root the difference in si gn convention arises from the point of view of locating the planes 
on which shear stress act. From physi cal point of view these sign have no meaning. 

 
The largest stress regard less of si gn is always know as maximum shear stress. 

 
Principal plane inclination in ter ms of associated principal stress: 

 

We know that the equation  

yields two values of q i.e. the inclin ation of the two principal planes on which the principal stre sses s1 
and s2 act. It is uncertain,however, which stress acts on which plane unless equation. 

 
 
 

is used and observing which one of the two principal 
stresses is obtained. 

 

Alternatively we can also find the a nswer to this problem in the following manner 



  

 

 

 

 
 
 
 

 
 

Consider once again the equilibriu m of a triangular block of material of unit depth, Assuming AC to be 

a principal plane on which principal stresses σp acts, and the shear stress is zero. 

 
Resolving the forces horizontally w e get: 

 
σx .BC . 1 + τxy .AB . 1 = σp . cosθ . AC dividing the above equation through by BC we get 



  

 

 

 

 
 

 

UNIV-IV Chapter 5 
 

 

UNSYMMETRICAL BENDING AND SHEAR CENTRE 

 

 

GRAPHICAL SOLUTION MOHR’S STRESS CIRCLE 

 
The transformation equations for plane stress can be represented in a graphical form known as Mohr's 
circle. This grapical representation is very useful in depending the relationships between nor mal and 
shear stresses acting on any inclined plan e at a point in a stresses body. 

 
To draw a Mohr's stress circle consider a complex stress system as shown in the figure 

 

 
The above system represents a co mplete stress system for any condition of applied load in t wo dimensions 



  

 

 

 

 
 

 

The Mohr's stress circle is used to find out graphically the direct stress σ and sheer stress on any plane 

inclined at θ to the plane on which σxacts.The direction of θ here is taken in anticlockwise dire ction from 
the BC. 

 
STEPS: 

 
In order to do achieve the desired o bjective we proceed in the following manner 

 
(iv) Label the Block ABCD. 

 
(v) Set up axes for the direct stress (as abscissa) and shear stress (as ordinate) 

 
(vi) Plot the stresses on two adjace nt faces e.g. AB and BC, using the following sign convention. 

 
Direct stresses tensile positive; compressive, negative 

Shear stresses 1 tending to turn block clockwise, positive 

1 tending to turn block counter clockwise, negative 

[ i.e shearing stresses are +ve when its movement about the centre of the element is clockwise ] 

 

This gives two points on the graph which may than be labeled as  respectively to denote 

stresses on these planes. 

 

• Join . 

 
• The point P where this line cuts the s axis is than the centre of Mohr's stress circle and the line 

joining  is diameter. Therefore the circle can now be drawn. 

 
Now every point on the circle then r epresents a state of stress on some plane through C. 

 



  

 

 

 

 
 
 

Proof: 

 

 
Consider any point Q on the circum ference of the circle, such that PQ makes an angle 2 with BC, and drop 
a perpendicular from Q to meet the s axis at N.Then OQ represents the resultant stress on the plane an 

angle θ to BC. Here we have assu med that σx  σy 

 
Now let us find out the coordinates of point Q. These are ON and QN. 

From the figure drawn earlier 

ON = OP + PN 

OP = OK + KP 

OP = σy  + 1/2 ( σx− σy) 

 

= σy / 2 + σy / 2 + σx / 2 + σy / 2 

 

= ( σx  + σy ) / 2 

 

PN = Rcos( 2θ − β ) 

hence ON = OP + PN 

= ( σx + σy ) / 2 + Rcos( 2θ − ) 

 

= ( x + σy ) / 2 + Rcos2θ cosβ + Rsin2θsinβ 

now make the substitutions for Rcosβ and Rsinβ. 



  

 

 

 

 
 
 
 
 

Thus,  

ON = 1/2 ( x + σy ) + 1/2 ( x − σy )cos2θ + τxysin2  (1) 

Similarly QM = Rsin( 2θ − β ) 
 

= Rsin2θcosβ - Rcos2θsinβ 

 

Thus, substituting the values of R cosβ and Rsinβ, we get 
 

QM = 1/2 ( σx − σy)sin2θ − τxycos2θ (2) 
 

If we examine the equation (1) and (2), we see that this is the same equation which we have already derived 
analytically 

 
Thus the co-ordinates of Q are the normal and shear stresses on the plane inclined at θ to B C in the 
original stress system. 

 

N.B: Since angle  PQ is 2θ on Mohr's circle and not θ it becomes obvious that angles ar e doubled on 

Mohr's circle. This is the only differ ence, however, as They are measured in the same directi on and from 

the same plane in both figures. 

 
Further points to be noted are : 

 
(1) The direct stress is maximum when Q is at M and at this point obviously the sheer stress is zero, hence 

by definition OM is the length representing the maximum principal stresses σ1 and 2θ1 gives the angle of the 

plane θ1 from BC. Similar OL is the other principal stress and is represented by σ2 

 
(2) The maximum shear stress is given by the highest point on the circle and is represented y the radius of 
the circle. 

 
This follows that since shear stresses and complimentary sheer stresses have the same value; therefore 

the centre of the circle will always lie o n the s axis midway between σx and σy . [ since +τxy & −τxy are shear 
stress & complimentary shear stress so they are same in magnitude but different in sign. ] 

 
(3) From the above point the maxim um sheer stress i.e. the Radius of the Mohr's stress circle would be 

 

 

While the direct stress on the plane of maximum shear must be mid 1 may between σx and σ y i.e 
 



  

 

 

 

 
 
 
 

 
 

(4) As already defined the principal planes are the planes on which the shear components are 

zero. Therefore are conclude that on principal plane the sheer stress is zero. 

(5) Since the resultant of two stress at 90
0 

can be found from the parallogram of vectors as shown in 

the diagram.Thus, the resultant stress on the plane at q to BC is given by OQ on Mohr's Circle. 

 

 
(6) The graphical method of solution for a complex stress problems using Mohr's circle is a very powerful 
technique, since all the information relating to any plane within the stressed element is contained in the 
single construction. It thus, provides a convenient and rapid means of solution. Which is less prone to 
arithmetical errors and is highly recommended. 

 
ILLUSRATIVE PROBLEMS: 

 

Let us discuss few representative problems dealing with complex state of stress to be solved 
either analytically or graphically. 

 
PROB 1: A circular bar 40 mm diameter carries an axial tensile load of 105 kN. What is the Value of 

shear stress on the planes on which the normal stress has a value of 50 MN/m
2 

tensile. 

Solution: 

 

Tensile stress σy= F / A = 105 x 10
3 

/ π x (0.02)
2
 

= 83.55 MN/m
2
 

 
Now the normal stress on an obliqe plane is given by the relation 

 

σ = σysin
2θ 



  

 

 

 

 

 

50 x 10
6 

= 83.55 MN/m
2 

x 10
6
sin

2θ 

θ = 50
0
68' 

The shear stress on the oblique plane is then given by 

 

τ = 1/2 σysin2θ 

= 1/2 x 83.55 x 10
6 

x sin 101.36 

= 40.96 MN/m
2
 

Therefore the required shear stress is 40.96 MN/m
2
 

PROB 2: 

 
For a given loading conditions the state of stress in the wall of a cylinder is expressed as follows: 

 

(a) 85 MN/m
2 

tensile 

(b) 25 MN/m
2 

tensile at right angles to (a) 

(c) Shear stresses of 60 MN/m
2 

on the planes on which the stresses (a) and (b) act; the sheer couple  

acting on planes carrying the 25 MN/m
2
stress is clockwise in effect. 

Calculate the principal stresses and the planes on which they act. What would be the effect on these results if  owing to a 

change of loading (a) becomes compressive while stresses (b) and (c) remain unchanged 

 
Solution: 

 
The problem may be attempted both analytically as well as graphically. Let us first obtain the analytical 
solution 

 

 
The principle stresses are given by the formula 



  

 

 

 

 
 
 
 
 

 
 
 
 

For finding out the planes on which the principle stresses act us the equation 

 

The solution of this equation will yeild two values θ i.e they θ1 and θ2 giving θ1= 31
0
71' & θ2= 121

0
71' 

(b) In this case only the loading (a) is changed i.e. its direction had been changed. While the other 
stresses remains unchanged hence now the block diagram becomes. 

 

 
Again the principal stresses would be given by the equation. 



  

 

 

 

 
 
 
 

 
 

Thus, the two principle stresses acting on the two mutually perpendicular planes i.e principle planes may be 
depicted on the element as shown below: 

 

 
So this is the direction of one principle plane & the principle stresses acting on this would be σ1 when is 

acting normal to this plane, now the direction of other principal plane would be 90
0 

+ θ because the 

principal planes are the two mutually perpendicular plane, hence rotate the another plane θ + 90
0 

in the 
same direction to get the another plane, n ow complete the material element if θ is negative that means we 
are measuring the angles in the opposite direction to the reference plane BC . 



  

 

 

 

 
 
 
 

 
 

Therefore the direction of other principal planes would be {−θ + 90} since the angle −θ is always less in 

magnitude then 90 hence the quantity (−θ + 90 ) would be positive therefore the Inclination of other 
plane with reference plane would be positive therefore if just complete the Block. It would appear as 

 

 

If we just want to measure the angles from the reference plane, than rotate this block through 180
0 

so as 
to have the following appearance. 



  

 

 

 

 
 
 
 

 
 

So whenever one of the angles comes negative to get the positive value, 

 

first Add 90
0 

to the value and again add 90
0 

as in this case θ = −23
0
74' 

so θ1 = −23
0
74' + 90

0 
= 66

0
26' .Again adding 90

0 
also gives the direction of other principle planes 

i.e θ2 = 66
0
26' + 90

0 
= 156

0
26' 

This is how we can show the angular position of these planes clearly. 

 
GRAPHICAL SOLUTION: 

 

Mohr's Circle solution: The same solution can be obtained using the graphical solution i.e the Mohr's 

stress circle,for the first part, the block diagram becomes 

 



  

 

 

 

4 

 
 

 
Construct the graphical construction as per the steps given earlier. 

 

 
Taking the measurements from the Mohr's stress circle, the various quantities computed are 

 

= 120 MN/m
2 

tensile 

= 10 MN/m
2 

compressive 

= 34
0 

counter clockwise from BC 

= 34
0 

+ 90 = 12 
0 

counter clockwise from BC 

 
Part Second : The required configuration i.e the block diagram for this case is shown along with the 
stress circle. 

σ1 

σ2 

θ1 

θ2 



  

 

 

 

 
 
 
 
 

 
 

By taking the measurements, the various quantites computed are given as 

 
2 

= 56.5 MN/m tensile 

 
2 

= 106 MN/m compressive 

 
0 

= 66 15' counter clockwise from BC 

 
0 

= 156  15' counter clockwise from BC 

 
Salient points of Mohr's stress circle: 

 

1. complementary shear stresses (on planes 90
0 

apart on the circle) are equal in magnitude 

2. The principal planes are orthogonal: points L and M are 180
0 

apart on the circle (90
0 

apart in material) 

 
3. There are no shear stresses on principal planes: point L and M lie on normal stress axis. 

 

4. The planes of maximum shear are 45
0 

from the principal points D and  E are 90
0  

, measured round 
the circle from points L and M. 

 
5. The maximum shear stresses are equal in magnitude and given by points D and E 

 
6. The normal stresses on the planes of maximum shear stress are equal i.e. points D and E both have 
normal stress co-ordinate which is equal to the two principal stresses. 

σ1 

σ2 

θ1 

θ2 



  

 

 

 

 
 
 
 
 

 
 

As we know that the circle represen ts all possible states of normal and shear stress on any plane through a 
stresses point in a material. Further we have seen that the co-ordinates of the point 1Q' are seen to be the 
same as those derived from equilibrium of the element. i.e. the normal and shear stress com  ponents on 
any plane passing through the point ca n be found using Mohr's circle. Worthy of note: 

 

1. The sides AB and BC of the elem ent ABCD, which are 90
0 

apart, are represented on the circle 

by  and they are 180
0 

apart. 

2. It has been shown that Mohr's circle represents all possible states at a point. Thus, it can b e seen at a 

point. Thus, it, can be seen that two planes LP and PM, 180
0 

apart on the diagram and therefore 90
0 

apart 

in the material, on which shear stress τθ is zero. These planes are termed as principal planes a nd normal 
stresses acting on them are known as principal stresses. 

 

Thus , σ1 = OL 

 
σ2 = OM 

 
3. The maximum shear stress in an element is given by the top and bottom points of the circle i.e by points J 1 and 

J2 ,Thus the maximum shear stress would be equal to the radius of i.e. τmax= 1/2( 1− σ2 ),the corresponding 

normal stress is obviously the distance OP = 1/2 ( x+ σy) , Further it can also be seen that the planes on which 
the shear stres s is maximum are situated 90

0 
from the principal planes ( on circle ), and 

45
0 

in the material. 

 
4. The minimum normal stress is jus t as important as the maximum. The algebraic minimum s tress could 
have a magnitude greater than that of the maximum principal stress if the state of stress wer e such that 
the centre of the circle is to the left of orgin. 

 

i.e. if σ1 = 20 MN/m
2 

(say) 

σ2 = −80 MN/m
2 

(say) 

Then τmax
m 

= ( σ1 − σ2 / 2 ) = 50 MN/m
2

 



  

 

 

 

 
 
 
 

If should be noted that the principal stresses are considered a maximum or minimum mathem atically e.g. 
a compressive or negative stress is l ess than a positive stress, irrespective or numerical value. 

 
5. Since the stresses on perpendul ar faces of any element are given by the co-ordinates of t wo 
diametrically opposite points on the circle, thus, the sum of the two normal stresses for any and all 
orientations of the element is constant, i.e. Thus sum is an invariant for any particular state of stress. 

 
Sum of the two normal stress comp onents acting on mutually perpendicular planes at a point in a state 
of plane stress is not affected by the o rientation of these planes. 

 

 
This can be also understand from t he circle Since AB and BC are diametrically opposite thus, what ever 
may be their orientation, they will always lie on the diametre or we can say that their sum won't change, it 
can also be seen from analytical relatio ns 

 

We know  

on plane BC; θ = 0 

σn1 = σx 

on plane AB; θ = 270
0
 

σn2 = σy 

 

Thus σn1 + σn2= σx+ σy 

 
6. If σ1 = σ2, the Mohr's stress circle degenerates into a point and no shearing stresses are d eveloped on  
xy plane. 

 

7. If σx+ σy= 0, then the center of Mohr's circle coincides with the origin of σ − τ co-ordinates. 



  

 

 

 

 
 
 

ANALYSIS OF STRAINS 
 

CONCEPT OF STRAIN 

 
Concept of strain : if a bar is subj ected to a direct load, and hence a stress the bar will change in length. 

If the bar has an original length L and changes by an amount δL, the strain produce is defined as follows: 
 

 
Strain is thus, a measure of the deformation of the material and is a nondimensional Quantity i.e. it has no 
units. It is simply a ratio of two qua ntities with the same unit. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Since in practice, the extensions of materials under load are very very small, it is often convenient to measure 

the strain in the form of strain x 10
-6 

i.e. micro strain, when the symbol used becom es  ∈. 

Sign convention for strain: 

 
Tensile strains are positive wherea s compressive strains are negative. The strain defined earlier was 
known as linear strain or normal strain or the longitudinal strain now let us define the shear strain. 



  

 

 

 

 
 
 

 

Chapter 5 Chapter 5 
 

 

UNSYMMETRICAL BENDING AND SHEAR CENTRE 

 

 

GRAPHICAL SOLUTION MOHR’S STRESS CIRCLE 

 
The transformation equations for plane stress can be represented in a graphical form known as Mohr's 
circle. This grapical representation is very useful in depending the relationships between nor mal and 
shear stresses acting on any inclined plan e at a point in a stresses body. 

 
To draw a Mohr's stress circle consider a complex stress system as shown in the figure 

 

 
The above system represents a co mplete stress system for any condition of applied load in t wo dimensions 



  

 

 

 

 
 

 

The Mohr's stress circle is used to find out graphically the direct stress σ and sheer stress on any plane 

inclined at θ to the plane on which σxacts.The direction of θ here is taken in anticlockwise dire ction from 
the BC. 

 
STEPS: 

 
In order to do achieve the desired o bjective we proceed in the following manner 

 
(vii) Label the Block ABCD. 

 
(viii) Set up axes for the direct stress (as abscissa) and shear stress (as ordinate) 

 
(ix) Plot the stresses on two adjace nt faces e.g. AB and BC, using the following sign convention. 

 
Direct stresses tensile positive; compressive, negative 

Shear stresses 1 tending to turn block clockwise, positive 

1 tending to turn block counter clockwise, negative 

[ i.e shearing stresses are +ve when its movement about the centre of the element is clockwise ] 

 

This gives two points on the graph which may than be labeled as  respectively to denote 

stresses on these planes. 

 

• Join . 

 
• The point P where this line cuts the s axis is than the centre of Mohr's stress circle and the line 

joining  is diameter. Therefore the circle can now be drawn. 

 
Now every point on the circle then r epresents a state of stress on some plane through C. 

 



  

 

 

 

 
 
 

Proof: 

 

 
Consider any point Q on the circum ference of the circle, such that PQ makes an angle 2 with BC, and drop 
a perpendicular from Q to meet the s axis at N.Then OQ represents the resultant stress on the plane an 

angle θ to BC. Here we have assu med that σx  σy 

 
Now let us find out the coordinates of point Q. These are ON and QN. 

From the figure drawn earlier 

ON = OP + PN 

OP = OK + KP 

OP = σy  + 1/2 ( σx− σy) 

 

= σy / 2 + σy / 2 + σx / 2 + σy / 2 

 

= ( σx  + σy ) / 2 

 

PN = Rcos( 2θ − β ) 

hence ON = OP + PN 

= ( σx + σy ) / 2 + Rcos( 2θ − ) 

 

= ( x + σy ) / 2 + Rcos2θ cosβ + Rsin2θsinβ 

now make the substitutions for Rcosβ and Rsinβ. 



  

 

 

 

 
 
 
 
 

Thus,  

ON = 1/2 ( x + σy ) + 1/2 ( x − σy )cos2θ + τxysin2  (1) 

Similarly QM = Rsin( 2θ − β ) 
 

= Rsin2θcosβ - Rcos2θsinβ 

 

Thus, substituting the values of R cosβ and Rsinβ, we get 
 

QM = 1/2 ( σx − σy)sin2θ − τxycos2θ (2) 
 

If we examine the equation (1) and (2), we see that this is the same equation which we have already derived 
analytically 

 
Thus the co-ordinates of Q are the normal and shear stresses on the plane inclined at θ to B C in the 
original stress system. 

 

N.B: Since angle  PQ is 2θ on Mohr's circle and not θ it becomes obvious that angles ar e doubled on 

Mohr's circle. This is the only differ ence, however, as They are measured in the same directi on and from 

the same plane in both figures. 

 
Further points to be noted are : 

 
(7) The direct stress is maximum when Q is at M and at this point obviously the sheer stress is zero, hence 

by definition OM is the length representing the maximum principal stresses σ1 and 2θ1 gives the angle of the 

plane θ1 from BC. Similar OL is the other principal stress and is represented by σ2 

 
(8) The maximum shear stress is given by the highest point on the circle and is represented y the radius of 
the circle. 

 
This follows that since shear stresses and complimentary sheer stresses have the same value; therefore 

the centre of the circle will always lie o n the s axis midway between σx and σy . [ since +τxy & −τxy are shear 
stress & complimentary shear stress so they are same in magnitude but different in sign. ] 

 
(9) From the above point the maxim um sheer stress i.e. the Radius of the Mohr's stress circle would be 

 

 

While the direct stress on the plane of maximum shear must be mid 1 may between σx and σ y i.e 
 



  

 

 

 

 
 
 
 

 
 

(10) As already defined the principal planes are the planes on which the shear components are 

zero. Therefore are conclude that on principal plane the sheer stress is zero. 

(11) Since the resultant of two stress at 90
0 

can be found from the parallogram of vectors as shown in 

the diagram.Thus, the resultant stress on the plane at q to BC is given by OQ on Mohr's Circle. 

 

 
(12) The graphical method of solution for a complex stress problems using Mohr's circle is a very 
powerful technique, since all the information relating to any plane within the stressed element is contained 
in the single construction. It thus, provides a convenient and rapid means of solution. Which is less prone 
to arithmetical errors and is highly recommended. 

 
ILLUSRATIVE PROBLEMS: 

 

Let us discuss few representative problems dealing with complex state of stress to be solved 
either analytically or graphically. 

 
PROB 1: A circular bar 40 mm diameter carries an axial tensile load of 105 kN. What is the Value of 

shear stress on the planes on which the normal stress has a value of 50 MN/m
2 

tensile. 

Solution: 

 

Tensile stress σy= F / A = 105 x 10
3 

/ π x (0.02)
2
 

= 83.55 MN/m
2
 

 
Now the normal stress on an obliqe plane is given by the relation 

 

σ = σysin
2θ 



  

 

 

 

 

 

50 x 10
6 

= 83.55 MN/m
2 

x 10
6
sin

2θ 

θ = 50
0
68' 

The shear stress on the oblique plane is then given by 

 

τ = 1/2 σysin2θ 

= 1/2 x 83.55 x 10
6 

x sin 101.36 

= 40.96 MN/m
2
 

Therefore the required shear stress is 40.96 MN/m
2
 

PROB 2: 

 
For a given loading conditions the state of stress in the wall of a cylinder is expressed as follows: 

 

(a) 85 MN/m
2 

tensile 

(b) 25 MN/m
2 

tensile at right angles to (a) 

(c) Shear stresses of 60 MN/m
2 

on the planes on which the stresses (a) and (b) act; the sheer couple  

acting on planes carrying the 25 MN/m
2
stress is clockwise in effect. 

Calculate the principal stresses and the planes on which they act. What would be the effect on these results if  owing to a 

change of loading (a) becomes compressive while stresses (b) and (c) remain unchanged 

 
Solution: 

 
The problem may be attempted both analytically as well as graphically. Let us first obtain the analytical 
solution 

 

 
The principle stresses are given by the formula 



  

 

 

 

 
 
 
 
 

 
 
 
 

For finding out the planes on which the principle stresses act us the equation 

 

The solution of this equation will yeild two values θ i.e they θ1 and θ2 giving θ1= 31
0
71' & θ2= 121

0
71' 

(b) In this case only the loading (a) is changed i.e. its direction had been changed. While the other 
stresses remains unchanged hence now the block diagram becomes. 

 

 
Again the principal stresses would be given by the equation. 



  

 

 

 

 
 
 
 

 
 

Thus, the two principle stresses acting on the two mutually perpendicular planes i.e principle planes may be 
depicted on the element as shown below: 

 

 
So this is the direction of one principle plane & the principle stresses acting on this would be σ1 when is 

acting normal to this plane, now the direction of other principal plane would be 90
0 

+ θ because the 

principal planes are the two mutually perpendicular plane, hence rotate the another plane θ + 90
0 

in the 
same direction to get the another plane, n ow complete the material element if θ is negative that means we 
are measuring the angles in the opposite direction to the reference plane BC . 



  

 

 

 

 
 
 
 

 
 

Therefore the direction of other principal planes would be {−θ + 90} since the angle −θ is always less in 

magnitude then 90 hence the quantity (−θ + 90 ) would be positive therefore the Inclination of other 
plane with reference plane would be positive therefore if just complete the Block. It would appear as 

 

 

If we just want to measure the angles from the reference plane, than rotate this block through 180
0 

so as 
to have the following appearance. 



  

 

 

 

 
 
 
 

 
 

So whenever one of the angles comes negative to get the positive value, 

 

first Add 90
0 

to the value and again add 90
0 

as in this case θ = −23
0
74' 

so θ1 = −23
0
74' + 90

0 
= 66

0
26' .Again adding 90

0 
also gives the direction of other principle planes 

i.e θ2 = 66
0
26' + 90

0 
= 156

0
26' 

This is how we can show the angular position of these planes clearly. 

 
GRAPHICAL SOLUTION: 

 

Mohr's Circle solution: The same solution can be obtained using the graphical solution i.e the Mohr's 

stress circle,for the first part, the block diagram becomes 
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Construct the graphical construction as per the steps given earlier. 

 

 
Taking the measurements from the Mohr's stress circle, the various quantities computed are 

 

= 120 MN/m
2 

tensile 

= 10 MN/m
2 

compressive 

= 34
0 

counter clockwise from BC 

= 34
0 

+ 90 = 12 
0 

counter clockwise from BC 

 
Part Second : The required configuration i.e the block diagram for this case is shown along with the 
stress circle. 

σ1 

σ2 

θ1 

θ2 



  

 

 

 

 
 
 
 
 

 
 

By taking the measurements, the various quantites computed are given as 

 
2 

= 56.5 MN/m tensile 

 
2 

= 106 MN/m compressive 

 
0 

= 66 15' counter clockwise from BC 

 
0 

= 156  15' counter clockwise from BC 

 
Salient points of Mohr's stress circle: 

 

7. complementary shear stresses (on planes 90
0 

apart on the circle) are equal in magnitude 

8. The principal planes are orthogonal: points L and M are 180
0 

apart on the circle (90
0 

apart in material) 

 
9. There are no shear stresses on principal planes: point L and M lie on normal stress axis. 

 

10. The planes of maximum shear are 45
0 

from the principal points D and  E are 90
0  

, measured round 
the circle from points L and M. 

 
11. The maximum shear stresses are equal in magnitude and given by points D and E 

 
12. The normal stresses on the planes of maximum shear stress are equal i.e. points D and E both have 
normal stress co-ordinate which is equal to the two principal stresses. 

σ1 

σ2 

θ1 

θ2 



  

 

 

 

 
 
 
 
 

 
 

As we know that the circle represen ts all possible states of normal and shear stress on any plane through a 
stresses point in a material. Further we have seen that the co-ordinates of the point 1Q' are seen to be the 
same as those derived from equilibrium of the element. i.e. the normal and shear stress com  ponents on 
any plane passing through the point ca n be found using Mohr's circle. Worthy of note: 

 

8. The sides AB and BC of the elem ent ABCD, which are 90
0 

apart, are represented on the circle 

by  and they are 180
0 

apart. 

9. It has been shown that Mohr's circle represents all possible states at a point. Thus, it can b e seen at a 

point. Thus, it, can be seen that two planes LP and PM, 180
0 

apart on the diagram and therefore 90
0 

apart 

in the material, on which shear stress τθ is zero. These planes are termed as principal planes a nd normal 
stresses acting on them are known as principal stresses. 

 

Thus , σ1 = OL 

 
σ2 = OM 

 
10. The maximum shear stress in an element is given by the top and bottom points of the circle i.e by points J 1 

and J2 ,Thus the maximum shear stress would be equal to the radius of i.e. τmax= 1/2( 1− σ2 ),the corresponding 

normal stress is obviously the distance OP = 1/2 ( x+ σy) , Further it can also be seen that the planes on which 
the shear stres s is maximum are situated 90

0 
from the principal planes ( on circle ), and 

45
0 

in the material. 

 
11. The minimum normal stress is jus t as important as the maximum. The algebraic minimum s tress 
could have a magnitude greater than that of the maximum principal stress if the state of stress wer e such 
that the centre of the circle is to the left of orgin. 

 

i.e. if σ1 = 20 MN/m
2 

(say) 

σ2 = −80 MN/m
2 

(say) 

Then τmax
m 

= ( σ1 − σ2 / 2 ) = 50 MN/m
2

 



  

 

 

 

 
 
 
 

If should be noted that the principal stresses are considered a maximum or minimum mathem atically e.g. 
a compressive or negative stress is l ess than a positive stress, irrespective or numerical value. 

 
12. Since the stresses on perpendul ar faces of any element are given by the co-ordinates of t wo 
diametrically opposite points on the circle, thus, the sum of the two normal stresses for any and all 
orientations of the element is constant, i.e. Thus sum is an invariant for any particular state of stress. 

 
Sum of the two normal stress comp onents acting on mutually perpendicular planes at a point in a state 
of plane stress is not affected by the o rientation of these planes. 

 

 
This can be also understand from t he circle Since AB and BC are diametrically opposite thus, what ever 
may be their orientation, they will always lie on the diametre or we can say that their sum won't change, it 
can also be seen from analytical relatio ns 

 

We know  

on plane BC; θ = 0 

σn1 = σx 

on plane AB; θ = 270
0
 

σn2 = σy 

 

Thus σn1 + σn2= σx+ σy 

 
13. If σ1 = σ2, the Mohr's stress circle degenerates into a point and no shearing stresses are d eveloped on  
xy plane. 

 

14. If σx+ σy= 0, then the center of Mohr's circle coincides with the origin of σ − τ co-ordinates. 



  

 

 

 

 
 
 

ANALYSIS OF STRAINS 
 

CONCEPT OF STRAIN 

 
Concept of strain : if a bar is subj ected to a direct load, and hence a stress the bar will 

change in length. If the bar has an original length L and changes by an amount δL, the strain 
produce is defined as follows: 

 

 
Strain is thus, a measure of the deformation of the material and is a nondimensional Quantity 
i.e. it has no units. It is simply a ratio of two qua ntities with the same unit. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Since in practice, the extensions of materials under load are very very small, it is often 

convenient to measure the strain in the form of strain x 10
-6 

i.e. micro strain, when the symbol 

used becom es  ∈. 

Sign convention for strain: 

 
Tensile strains are positive wherea s compressive strains are negative. The strain defined 
earlier was known as linear strain or normal strain or the longitudinal strain now let us 
define the shear strain. 
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