UNIT -1
(FUNCTIONS COMPLEX VARIABLES)

Defn: A number of the form x+iy , where x and y are real numbers and i=,/(—1) is called a

complex number.x is jcalled the real part of x+iy and y is called the imaginary part
written R(x+1y), I(x+1y) respectively.
Properties:

1) If x+iy=u+iv then x-iy=u-iv

2) Two complex numbers x+iy and u+iv are said to be equal where R(x+iy)=R(u+iv) is x=u,
I(x+iy)=I(u+iv) i.e y=v

3) Sum, difference, product and quotient of any complex numbers is itself a csomplex
number.

4) Every complex number x+iy can always be expressed in the form r (cos @ +i sin 6)

Defn: The number r = +\/x2 + y2 is called the modulus of x+iy and is written as mod(x+iy) or

(x+iy) the angle 6 is called the amplitude of argument of x+iy and is written as amp(x+iy) or

arg(x+iy).
Evidently, the amplitude 6 has an infinite number of values. The value of 6 which lie

between —IT and IT is called the principal value of the Amplitude.

If the conjugate of Z= x+iy be Z then R(Z) = %(Z-i-Z) and I(Z) = 2ll.(Z — Z)

Zl= JR2@)+1%2Z) = |Z|

1Z|%= 2Z

Zl+Z2 221 +22

Zl 'Zz =21 '22

A Z —
d 8 =_—1 where Z2 #0
Z?2

The point whose Cartesian coordinates are (x,y) uniquely represents the complex number z =
x+iy on the complex plane Z. The diagram in which the representation is carried out is called the
argand’s diagram.

If Z1,Z, are two complex numbers then

1 |Z1+Z;,|<|z]+|2,

2. |Zl—zz|z|zl|+‘zz‘

In general |Zi+Zy+.....42,| < | 24| + | 25| +.oooot | 2]



3. amp (Z1Z,) = amp (Z;) + amp (Z;)
4. |ZJ/7,|=74| / |Z2]
5. amp (Z1/Z,) =amp (Z1)- amp(Z,)
. Demoivre’s theorem: If nbel) an integer positive or negative then
(Cos 0 +isin®)" = cos nO +isinn®

. If xandy are real variables then z = x+iy is called complex variable. If corresponding to each
value of the complex variable z(= x+iy) in a region R there corresponds one or more values of
another complex variable w (= u+iv) then w is called a function of complex variable z and is
denoted by w =f(z) = u+iv where u,v are real and imaginary parts of w and the function of real
variables

w =f(z) =u(x,y)+iv(x,y)

If to each value of z there corresponds one and only one value of w then w is called a single valued
function of z.

If to each value of z there corresponds more than one value of w then w is called multi

valued function of z

e To represent w =f(z) graphically, we take two argand diagrams one to represent the point z and the
other to represent the point w

e The distance between the point z and ‘a’ is denoted by |z-a|

e Acircle of radius ‘d’ with center at ‘a’ is denoted by |z-a| =d.

e The inequality |z-a|< d denoted by every point inside the circle C: |z-a|<d i.e., it represents the interior
of the circle excluding its circumference. The interior of the circle including its circumference is
denoted by |z-a| <d.

e The Neighborhood of a point ‘a’ is represented by the inequality |z-a|<d.

e |z-a| >d represents the exterior of the circle with center at ‘a’ and radius ‘d’.

e The region between two concentric circles of radii d; and d, (d;>d;) can be represented by d; <|z-a|

<d,

The equation |z| =1 represents a unit circle about origin.

If there exists a circle with center at origin enclosing all points of a region R then R is said to be bounded.

If a region is defined to include all the points on its various boundary curves, it is said to be closed.

If R contains none of its boundary points, it is said to be open.

A set of points in the complex plane S is called open if every point of S has a ngd. All the points of which

belong to S.
e A set of points in the complex plane S is called closed if the points which do not belong to S form an
open set S.

Limit of f(z): A function w= f(z) tends to the limit ‘¢’ as z approaches a point z, along any path, if to

each positive arbitrary number g, however small there corresponds a positive number 8, such that |f(z)- /|

< g whenever 0<|z- 75| <5

i.e., /- <f(z) < £ +e¢ whenever zy-6 <2< 2o+d , 2 # 2,

We write hm =/
=20

. In real variables x— X, implies x approaches x, along the line either from left or right.



. In complex variables z— z, implies z approaches z, along the path (straight or curved) since a
complex plane can be joined by infinite number of curves.

Continuity of f(z): A single valued function f(z) is said to be continuous at a point z = z, if lll’Il = f(zo)
=20

¢ A function f(z) is said to be continuous in a region R in the Z-plane if it is continuous at every point of the
region.

o If w=f(z)= U(x,y)+iv(x,y) is continuous at z= zo then u(x,y) and v(x,y) are also continuous at z=zyi.e., at x=
Xo and y=y,.

Conversely, if u(x,y) and v(x,y) are continuous at (Xo,Yo) then f(z) will be continuous at z=z,

) Sum, difference and product of two continuous functions is continuous .Quotient function of two
continuous if exists then it is also continuous .If f(z) is continuous |f(z)]| is also continuous.

Differentiablity:

d
A single valued function f(z) is differentiable at the point z=z, is denoted by f ‘(z) or d_w and is defined
V4

. +&7)—
by the equation f *(z,)= hm fz+0) = f(2) provided the limit exists.

&—0 &

Analytic function: A single valued function f(z) is said to be analytic at a point z, if it has a unique derivative
at zp and at every point in the neighborhood of z;

Cauchy-Riemann Equations:

Cartesian form: The necessary and sufficient condition for for function w=f(z) to be analytic in a Region R

) o ou Ou ov ov . ) . ou Ov
are a) The four first order derivatives — ,— ,—, — exists and are continuous in R. b) —=—
Ox 0Oy Ox Oy ox Oy
and 6_u = —@
Oy ox

e The conditions given in b) are called cauchy-Riemann equation or C.R. Equations.
Polar form: Let (r,0) be the polar co-ordinates of the point whose Cartesian co-ordinates are (x,y) withx=r

0 10 0 0
cosO y =rsinB.The C.R. Equations are M2 gnd B Y

or ro0 o0 or

Harmonic Function: Any function ¢(x,y) which possess continuous partial derivatives of the first and second

2 2
"

orders and satisfy Laplace equations ——

5 5 is called Harmonic function.
ox~ Oy

Conjugate Harmonic function: If a function u(x,y) is Harmonic in the domain and if we find another
Harmonic function v(x,y) such that they satisfy the cauchy- Riemann equations and Laplace equations then
we say Vv(x,y) is harmonic conjugate of u(x,y).

Properties of Analytic Functions:



e An analytic function with constant real part is constant.

An analytic function with constant imaginary part is constant.

An analytic function with constant modulus is constant.

The real and imaginary parts of an analytic functions are harmonic

Every analytic function f(z) = u+iv defines two families of curves u(x,y) = ¢; and
v(x,y) =c, forms an orthogonal system.

An analytic function can be easily constructed by using Milne —=Thomson method.

Elementary functions:

Sinf=(e®-e™)/2 cosO = (e®+e ?)/2

Sin ix =isinh x cosix = coshx
Sinh ix = isinx coshix = cosx
Tanix =itanhx Tanhix =i tanx

Complex potential function: The analytic function w = ¢(x,y)+iy(x,y) is called complex potential function. Its
real part ¢(x,y) represents the velocity potential function and its imaginary part y(x,y) represents the
stream function.

Both ¢,y satisfy Laplace equation. Given any one of them we find the other.
Essay Questions:
1. Separate the real and imaginary parts of a) tan(x+iy) b) sec(x+iy)
2. Find the general values of log(1+i)
3. Find all the roots of sinz =2
4. Find the values of i' and log(i')
5. State and prove the necessary and sufficient condition for analyticity.

Show that both real and imaginary parts of an analytic function are harmonic
7. Prove that every analytic function f(z) = u+iv defines two families of curves u(x,y)=c; and v(x,y) = c,
forming an orthogonal system.
8. Define Cauchy-Reimann equations in polar form.
Ci+)-y3a-i)

X2+y2

the cauchy-Riemann equations are satisfied at origin.

10. Show that u = sinx cushy +2 cosx sinhy+x’-y*+4xy satisfy laplace equations. Find the corresponding
analytical function.

11. Find the analytic function whose real part is u = €*[ (x*-y*)cosy —2xysiny]

12. If w= o¢+iy represents the complex potential transform electric field and

9. Prove that the function f(z) defined by  f(z) = (z#0), f(0) = 0 is continuous and



13.
14,

15.

16.
17.
18.

19.
20.

21.
22.

23.

24,

25.

26.

W = x>-y+ 3 . Determine the function ¢
X" +Yy

If w=Ilogz.Find dw/dz and determine where w is not analytic.
Find the conjugate harmonic function of the harmonic function  u = x*-y*

2 2
If f(z) = u+iv is analytic the prove that a) —2+6—2 |f(z)|2:4|f'(z)|2 and
ox
0> 82 P
b) | —5+— [U7 =p(p-DUP | f'@I
ox~ Oy

If f(z) = u+iv is an analytic function of z and if u-v = €* (cosy-siny) find f(z) in terms of z.
S.T the function f(z) = | z|* is differentiable only at the origin
S.T the following functions are harmonic and also find the conjugate harmonic function

iju= %log(x2 + y2) i) u =4xy-3x+2 iii)u = e*(xcos2y-ysin2y)

.Find the analytic function whose imaginary part is e (xcosy+ysiny)
If f(z) is analytic function with constant modulus s.t f(z) is constant

If the potential function is log( X+ yz) find the flux function and the complex potential function

S.Tu=esin( x* - yz) is harmonic find the conjugate function v and express u+iv as an analytic

function of z
Determine whether the function sinxsiny-icosxcosy is analytic function of complex variable z = x+iy.

2 .
Xy (x+i
S.T f(2) =y2(—4y) z# 0&f(0)=0is analyticatz=0
X +y
S.T f(z) =xy +iy is continuous every where but it is not analytic any where

sin 2x

Find the analytic function w = u +iv if u+v =
cosh2y—cos2x

cosx+sinx—e”
27.1ff(z) = u + iv is analytic function and u-v = —— find f(z) subject to the
2cosx—e’ —e™”

condition f(m\2).

UNIT-II
(COMPLEX INTEGRATION)

Complex Line integral: Let f(z) be a function which is continous at all points on the curve C whose end

points are A,B



Dividing the curve Cinto n parts by the points z, (= A),z1,2,,.....2, (=B). Let f(z) be defined at all these

n
points.Let z, be a point on the arc joining z,.; to z,. Let z,-z,.,=0 z,. Define the sum S, = z f(é‘r )5Zr the

r=I1

limit of the sum S, as n tents to infinity and 8z, tends to zero if exists is denoted by

b
I f(z2)dz or If(z)dz . This is called the line integral of f(z) along the curve C.
a C

Closed Curve: If the points z;, and z, coincide then curve Cis closed curve.

e The integral of closed curve is called the contour integral and is denoted by ifC f(2)dz

Relation between real and complex line integrals: If Z= x+iy so that dz=dx+idy and f(z)= u(x,y) +iv(x,y)

then the complex line integral Jf(z)dz can be expressed as sum or difference of two line integrals
C

of real functions as under

If(z)dz= j(udx—vdy)+ i jvdx+udy= J(u+iv)(dx+idy)
C C C C

If f(z) =1 then we have I| dz | = J-ds =/ where 7 is the length of the path of integration.
C C

If Cis a closed curve then Idz =0
C

dz

=0, n=0
n+l

If Cis a circle of radius r and center zy and if n is an integer then
c(z—zp)

=2ITi, n=0



Essay Questions:

1. Prove that IL:Zm,

C(Z—a)

2. Prove that j(z —a)"dz=0 where nis any integer # -1 and C is a circle |z-a|=r
C

1+i
3. Evaluate I(x— y +ix2)dz along the line z=0to z =1+I
0

4. Integrate f(z) =x*+ixy from A(1,1) to B(2,8) along the straight line AB

5. Evaluate I(Zy +x2 )dx+(3x—y)dy along the parabola x=2t, y=t’+3 joining the points (0,3) and
(2,4)

6. Evaluate I(Zy +x2 )dx+ (3x — y)dy along the parabola x=2t y=t*+3 joining the points (0,3) and

(2,4)

Simply Connected Region: A region is said to be simply connected if any simple closed curve lying in R can

be shrunk to a point with out leaving R
Multiply connected region: A region that is not simply connected is called multiply connected region.

Cauchy’s Integral Theorem: If f(z) is analytic function and f'(z)is continuous at each point with in or on a

closed curve C then If(z)dz =0
C

Extension of Cauchy’s Integral theorem: If C; and C, are two simple closed curves and if C, lies entirely

within the closed region between C, and C, then J.f(z)dz = If(z)dz both the integrals are taken
G C,

in the same direction

If there are finite number of contours Cy,C,......C,, with in C and f(z) is analytic in the region with in the

region between Cy,C,......C, then we have



J.f(z)dz = J.f(z)dz + jf(z)dz Froerrene + If(z)dz provided all the integrals are taken in
C q G, C,

same direction.

Cauchy’s Integral formula: If f(z) is an analytic function inside and on a simple closed curve C and z, is any

point within C then f(zo)=#I&dz
2im° (z2—2z0)

n! f(2)

Derivative of an Analytic function: f(zy) =—

- dz
2in? (4 _ZO)"+1

Cauchy’s Inequality: If |f(z)] <M along C the circle |z-zo| = 2 then [f"(zo)| < n! M/r" where n= 0,1,2,....

Liouville’s theorem: If f(z) is analytic in the whole Z- plane and if |f(z)| is bounded for allz then f(z) must be

constant

Essay Questions

2
277+
1. Evaluate Iudz where a) Cisacircle |z-1] =1 b) Cisacircle |z|=2
C Z . |
322 +7z+1 1
2.1f fla) = I—dz where cis |z| =2. Find f(3), (1) f(1-1) f(1-1)
C Z —a
e??
3. Evaluate §—dz where cis the circle |z|=3 using cauchy integral formula
(z—D(z-2)

C
4. State and prove Caucshy’s integral theorem.
5. Establish Cauchy’s integral formula.

2+i
6. Evaluate I(Zx +iy +1)dz along two paths x=t+1, y=2t*-1.
1-i

7. Evaluatefg dz where Cis

C



(i) the line segment joining the points(1,1) and (2,4)

(i) the curve x=t, y=t’ joining the points (1,1) and (2,4).

+4
8. EvaIuateJZ—dz is Cis (i) the circle |z+1-i|=2 (ii) the circle |z|=1

27 +2z+5
(iii)the circle |z+1+i|=2.
z—1 N
9. EvaIuatejz—dz where Cis |z-i|=2.
L(z+D7(z-2)
1+i
10. Evaluate J(x—y+lx2)dz along the line z=0to z =1+
0
2+i
-2 . X
11. Evaluate J z dzalong the line =5
0

(COMPLEX POWER SERIES)

Infinite series- Taylor’s and Laurent’s series.

Taylor’s series : If a function f(z) is Analytic inside a circle ‘c’ whose center is ‘a’ then for all z inside c f(z)=

(z— )2 (z— )

fl@+G@-a)f'(@+——f"(a)+- ——— @)+~

1. Putz=a+h (or) h=z-a

2
flash)= f(a)+hf’ (a)+ RAG )+————+—f (@) +———

2 n
2. Puta=0 f(z)= f(0)+zf'(0) + % f"O)y+———- +Z—' £(0) + ——— is called Maclaurin’s series.
! n!

Laurent’s series:

If f(z) is analytic inside and on the boundary of the ring stated region R bounded by two concentric circles c,

and ¢, of radii ry and r, ( r; > r,) respectively having center at ‘a’ then for all zin R



F(z)= a +a1(z—a)+a2(z—a)2 +————+a_1(z—a)_1 +a_2(z—a)_2 +——=

1
Where an:T §Li+l dw ,n=0,1,2,-----
7 (w-a)
and a = & dW,n=1,2,3’ _____

] —n+l
27 o (w—a) "

Essay Questions:

1
1. Find the Laurents series expansion of ——— — in powers of (z+1) for the range 0<|z+1|<2
(z+1)(z+3)
2" -1
2. Obtain the Taylor and Laurent’s series which represents the function —————— in the region |)
(z+2)(z+3)

|z]<2 (ii) 2<|Z|<3 (iii)|z]|>3

3. Expand cosz in Taylor’s series about z=%

2

4. Expand the following function in Laurents series.

Z

(i) . about z=-2 (ii) ¢ about z=1.
(z+1)(z+2) (z-1)°
5. Represent a function f(z)= _* by a series of positive and negative powers of
(z—=I)(z-3)
(z-1) which converges to f(z) when 0<]|z-1]<2.
1 . .
6. Expand f(z)= ——  in the region 1<|z|<2.
(z—-D(z-2)
z+3 . o N
7. Expand f(z)= — in the region(i) | z|=1 (ii) 1<]|z|<2.
W(z"-z2-2)

Zeros and Singularities:



Zeros of an Analytic function: A zero of an Analytic function f(z) is that value of z for which f(z)=0

Singularities of an Analytic function : A singularity of a function is that point at which the function f(z) ceases

to be analytic.

Isolated Singularity : If z=a is a singularity of f(z) and if f(z) is analytic at each point in its neighbourhood then

z=a is called an isolated singularity.

o0
Removable singularity f(z)= Z a,(z— a)" The singularity can be removed by defining the function f(z) at
n=0

z=a in such a way that it becomes analytic at z=a.

Poles: If all the negative powers of (z-a) in

2 -1 -2
f(z)= ag +a1(z—a)+ar(z—a)” +————+a_j(z—a) +a_p(z—a) ~+———
after the n™ we missing then the singularity at z=a is called a pole of order n.

A pole of first order is called a Simple pole.

Essential Singularity: If the number of negative powers of (z-a) in

f(z)= ag +a1(z—a)+a2(z—a)2 +————+a_1(z—a)_1 +a_2(z—a)_2 +——=

is in finite then z=a is called an essential singularity in this case ]y f(z) does not exist .
7—a

Residues: The coefficient of (z-a) in the expansion of f(z) around an isolated singularity is called the

residue of f(z) at that point and is written as Re ¢ f(2)

=a

Evaluation of Residues:

1. Iff(z) has a simple pole at z=a then Re ¢ f(2)=]im (z—a@) f(2)

Z=a Z—a



2. Suppose f(z) =% where v (z) = (z—a)F(z) where F(a)# 0 then I{Z:ean(ZFjr((C;))

3. Letz=a be a pole of f(z) of order m then

d m—1

[(z ~a)™ f(z)]

m—1

1.
%Sasf(z)— Zon-D) 1333 "

Cauchy’s Residue theorem:

If f(z) is analytic in a closed curve C except at a finite number of singular points within C then jf(z)dz =
C

2il1( Sum of the residues at the singular point within C)

UNIT-III

Evaluation of some of the definite integrals.

Many of the definite integrals can be evaluated by using cauchy’s

residue theorem. It may be observed that a definite integral that can be evaluated by using Cauchy’s

residue theorem may also be evaluated by other methods namely:

) Integration around the unit circle
o0
1] Integration of the type jf(x)dx
—0
) Indenting contours having poles on real axis
V) Using Jordan’s Lemma

Essay Questions:

. . . - COS7 2
7. Find the kind of singularities of ————— at z=0 and z=

(z—a)’
8. Find the residue of the following functions at each of the poles:



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

15.

16.

) 4z7-3 i 1-e%?
2(z=1)(z~2) 2

The function f(z) has a double pole at z=0 with residue 2, a simple pole at z=1 with residue 2, is
analytic at all other finite points of the plane and is bounded as |z| tends to infinity and if f(2)=5 and

f(-1)=2 then find f(z)

2
Find the residue of at those singular points which lie in side the circle |z|=2
z -1
3z-4
Evaluate I ——————dz where Cisacircle |z| =3/2
o Az=D(z=2)
. . 22-2z )
Find the residue of WD) at the respective poles
(z+D"(z= +4)
2 2
< do ¢ do 27
Show that I = I - = (a>b>0)
0 a+bcosf 0 a+bsn @ a2 _p2
cos 2610 ) ) )
Evaluate _[ (0 < a<1) by using contour integration
o 1—2acos@+a
o0
dx
Evaluate I 5 5 5 (a>0,b>0)
o (X" +aT)(xT+b7)
: : : Todx
Using the complex variable technique evaluate _[
0 x +1
e 0]
) cos mxdx
Evaluate by contour integrals on — 3 a>0
0 X~ +a
sin xdx . .
Evaluate _[ — by contour integration
oo (X7 +4x+5)
State and prove Cauchy’s Residue theorem
1
Use residue theorem evaluate Iz—dz where Cis the circle |z]|=1
- 27(z+2)
Z2
Determine the poles of the function f(zZ)= —————— and residue at each pole.

(z-%(z+2)

Z

ze
Find the residues of ————— at its poles.
2 2
(z=+a”)



-4
17.Evaluate Iﬁdz where Cis the circle |z|=%
A\ Z—INZ—

C

Z

2 y
18. a)Evaluate Iz e’ 2dz C: |z|=1 b)Evaluate J.
P!

dz over the circular path |z|=2.

C
19. Find the residue of the following at the respective poles.
. Z , 2% -2z
(i) 3 (ii) 7 5
(z° +1) (z+D“(z" +4)

cos 20

2z
20. Show that J. _
5+4cos@

=% by using residues.
0

21. Evaluate the following integrals by contour integration.

2 27 .2
0 | i 0<a<1 (i) | asn”0 g
0 1—2asm0+a2 0 a+bcose
0 2 00
x“dx dx
(iii) (iv)
_{O (x2 +1)(x% +4) £x4 +16
T x%dx % sin mxdx
(v) (vi) (a>0)
L( 2413 gx(x%a%
UNIT -1V

FOURIER SERIES AND TRANSFORMS

DEFINITIONS :



A function y = f(x) is said to be even, if f(-x) =f(x). The graph of the even function is always symmetrical
about the y-axis.

A function y=f(x) is said to be odd, if f(-x) = - f(x). The graph of the odd function is always symmetrical
about the origin.

For example, the function f(x) = |x| in [-1,1] is even as f(-x) = |—x| = |x| = f(x) and the function f(x) = x in

[-1,1] is odd as f(-x) = -x = -f(x). The graphs of these functions are shown below :

—=— Y = X

o.o

'1ID DI.5 [0 + DI ) +
0.5 W
0.0
100N e0TE 0T -0T2 00 o2 04 0% o’ L q.@
¥ o

Graph of f(x) = |x| Graph of f(x) = x

Note that the graph of f(x) = |x| is symmetrical about the y-axis and the graph of f(x) = x is symmetrical

about the origin.

1. If f(x) is even and g(x) is odd, then

e h(x)="f(x) x g(x) is odd
e h(x)=f(x) x f(x) is even
e h(x)=g(x) x g(x) is even



For example,
1. h(x) = x* cosx is even, since both x* and cosx are even functions
2. h(x) = xsinx is even, since x and sinx are odd functions

3. h(x) = x* sinx is odd, since x is even and sinx is odd.

2. Iff(x)is even, then .[f(x)dx = 2jf(x)dx
—a 0
3. If f(x) is odd, then j f(x)dx=0

For example,

a

a
J cosxdx = 2JCOS xdx, ascosxiseven
—-a 0

and Isin xdx =10, as sinxis odd

—a

PERIODIC FUNCTIONS :-

A periodic function has a basic shape which is repeated over and over again. The fundamental range is
the time (or sometimes distance) over which the basic shape is defined. The length of the fundamental
range is called the period.

A general periodic function f(x) of period T satisfies the condition



f(x+T) = f(x)

Here f(x) is a real-valued function and T is a positive real number.

As a consequence, it follows that

f(x) = f(x+T) = f(x+2T) = f(x+3T) = ..... = f(x+nT)

Thus,
f(x) = f(x+nT), n=1,2,3,.....

The function f(x) = sinx is periodic of period 27 since

Sin(x+2nm) = sinx, n=1,2,3,........

The graph of the function is shown below :

Y

o S S S S
T IR : . X
.E - 0| T I.. T T |:2I7T T T .. T T I.:Aﬂ-l T ...I T T :67T
» < PR Y

Note that the graph of the function between 0 and 27 is the same as that between 2w and 4r and so on.
It may be verified that a linear combination of periodic functions is also periodic.



FOURIER SERIES

A Fourier series of a periodic function consists of a sum of sine and cosine terms. Sines and cosines are
the most fundamental periodic functions.

The Fourier series is named after the French Mathematician and Physicist Jacques Fourier (1768 — 1830).
Fourier series has its application in problems pertaining to Heat conduction, acoustics, etc. The subject
matter may be divided into the following sub topics.

| |
Seriés with HaIf-rangk series Compl$< series Harmoni& Analysis
arbitrary period

FORMULA FOR FOURIER SERIES

Consider a real-valued function f(x) which obeys the following conditions called Dirichlet’s conditions :

1. f(x)is defined in an interval (a,a+2/), and f(x+2/) = f(x) so that f(x) is a periodic function of period
21.

2. f(x) is continuous or has only a finite number of discontinuities in the interval (a,a+2/).

3. f(x) has no or only a finite number of maxima or minima in the interval (a,a+2/).

Also, let



1a+2[

a = j f(x)dx (1)
a+2l n
a, = Z I f(x) COS(T)xdx, n=1273,..... (2)

a+2l
b, =7 j f(x)sin (%)xdx n=123,...(3)

a

Then, the infinite series

32(7711”{7”) )
n=1

is called the Fourier series of f(x) in the interval (a,a+2/). Also, the real numbers ay, a4, ay, ....an, and by,
b,, ....b, are called the Fourier coefficients of f(x). The formulae (1), (2) and (3) are called Euler’s
formulae.

It can be proved that the sum of the series (4) is f(x) if f(x) is continuous at x. Thus we have

f(x) = a_20 +>a, cos(%jx +b, sin [%Jx ....... (5)
n=1

Suppose f(x) is discontinuous at x, then the sum of the series (4) would be
1 . _
Sren+reo)]

where f(x*) and f(x') are the values of f(x) immediately to the right and to the left of f(x) respectively.
Particular Cases
Case (i)

Suppose a=0. Then f(x) is defined over the interval (0,2/). Formulae (1), (2), (3) reduce to



12
a= ! F(x)dx
1% nr
a, = ;jf(x)cos T xdx, n=12,....0 (6)
0
1% . (nx
b, =~ [ f(x)sin| == |xdx,
I [
Then the right-hand side of (5) is the Fourier expansion of f(x) over the interval (0,2/).

If we set I=m, then f(x) is defined over the interval (0,2r). Formulae (6) reduce to

ag = l ff(x)dx
T 0

1 2z
a =— x)cosnxdx
" n{f() , n=1,2,...00 (7)

1 2z
b, =— If(x)sin nxdx n=1,2,....0
T 0

Also, in this case, (5) becomes
a - .
f(x) = =2 + Zan cosnx + b, sin nx (8)
n=1
Case (ii)

Suppose a=-I. Then f(x) is defined over the interval (-/, /). Formulae (1), (2) (3) reduce to

l
a, = %J-f(x)dx n=1.2,... 0 (9)
-1

17 nmw
a, = ;J.lf(x) cos(zjdx



1 . (nm
b=, jl f(x)sm(zjdx, 12

Then the right-hand side of (5) is the Fourier expansion of f(x) over the interval (-/, /).
If we set | = &, then f(x) is defined over the interval (-wt, ). Formulae (9) reduce to
1 Vi
a = — j F(x)dx
71- =T

1 T
a =— x)cosnxdx
! njﬂf( ) , n=1,2,....00 (10)

b = [feosinnxdx  n=12,..c0
72- =T

Putting | =min (5), we get

a, ~ .
f(x) = =2+ >_a, cosnx + b, sin nx

n=1

PARTIAL SUMS

The Fourier series gives the exact value of the function. It uses an infinite number of terms which is
impossible to calculate. However, we can find the sum through the partial sum Sy defined as follows :

n=N
Sy(x)=a, + Z{an Cos(%)x + b, sin (%)x} where N takes positive

n=1

integral values.



In particular, the partial sums for N=1,2 are

S, (x)=a,+a, cos(%) + b, sin (%)
X N~ 27x . [ 2mx
S,(x) = a, +a,cos 7 + b, sin 7 +a, cos e + b, sin e

If we draw the graphs of partial sums and compare these with the graph of the original function f(x), it
may be verified that Sy(x) approximates f(x) for some large N.

Some useful results :

1. The following rule called Bernoulli’s generalized rule of integration by parts is useful in

evaluating the Fourier coefficients.
Iuvdx = UV, — UV, + UV F e,
Here u',u",..... are the successive derivatives of u and
v, = jvdx,vz = Ivldx, ......

We illustrate the rule, through the following examples :
) —Ccosnx —sin nx cosnx
szsmnxdx:xz — | —-2x > +2 3
n n n

2x 2x 2x 2x
J-x362xdx:x3 ¢ —3x? ¢ +6x ¢ -6 c_
2 4 8 16

2. The following integrals are also useful :

ax

J.e‘”‘ cosbxdx = [acosbx + bsin bx]

a’+b?

ax

[ e sin bxax = = [asin bx —bcosbx]



3. If ‘'n’isinteger, then

sinnt=0, cosnmt = (-1)", sin2nmt =0, cos2nm=1
Examples

1. Obtain the Fourier expansion of
1 .
f(x) = E(ﬂ—x) iN-T<X<T

We have,

1
a, = —
V4

1 P
= —| 77X —— =T
2r 2

1% 1751
a, =— If(x)cosnxdx:— j—(;z—x)cosnxdx
e, 22

J: f(x)dx = %j[é (T — x)dx

Here we use integration by parts, so that




n

b =— I%(ﬂ — x)sin nxdx

Using the values of ay, a, and b,, in the Fourier expansion

ay, ~ .
f(x)=?°+ > a,cosnx+ Y b,sin nx
n=1 n=1

we get,

sin nx

f(x)=

Nla

This is the required Fourier expansion of the given function.

2. Obtain the Fourier expansion of f(x)=e™ in the interval (-r, 7). Deduce that

(1)

72',,21’1 +1

cosechr =

Here,



1 T 1 —ax 7
to =L ferac= _{e_}
T T —a| .

ar —ar

e —e _2SiI]ha7T

ar ar
T

a, =— Je“”‘ cos nxdx
T

1 e—ax z
a,=—|——- {—acosnx+ nsin nx}
V4
-

a +n
_2a (—=1)"sinh arx
z a* +n’

e ) "
—| = 2{—asmnx—ncosnx}
rla +n .

_2n (=1)"sinh arx
Vs a’+n’

Thus,

sinh 2asinh 1
i) = Clﬂ' a aﬁz D"
ar V4

,,]Cl +l’l

For x=0, a=1, the series reduces to

H0)=1 = s1nh7z 2sinh 7 & (—1)

T 4 ,,,n+1

or

T

> cosnx +— 2 sinh a;rz n(-1)’

,,]Cl +l’l

SlIl nx



- smhﬂ+25mh7z{_%+z(:1) }

T T mn +1
2sinh 7 & (—1)"
or 1= 3
T n=2 N +1
Thus,

o0 (_l)n
mwecosechmr =2
; n* +1

This is the desired deduction.

3. Obtain the Fourier expansion of f(x) = x> over the interval (-w, 7). Deduce that

The function f(x) is even. Hence

1% 2%
ag= —If(x)dx=—.[f(x)dx
7T” Ty
2% 28T
=—J.x2dx:—{x—}
Ty 7 3,
_27r2
or %o = 3

a, = l jf(x) cos nxdx
4 -

2 T
= —If(x) cosnxdx, since f(x)cosnx is even
T 0

2 T
= —Ixz cosnxdx
T 0



Integrating by parts, we get

a - E{Xz(sm nx]_ 2x(—cozsnx}_ 2(— sin nx
V4 n n n

Also, b, = l If(x) sin nxdx=0  since f(x)sinnx is odd.
4 -

Thus
2 0 n
T 1)" cosnx
Foy=" a4y D¢
n=1 n
7’ =1
rt="—+4y —
3 ;nz
gi_z
~ 1 6
7’ 1 1
Hence, —=1+—2+—2+ .....
6 23

4. Obtain the Fourier expansion of

x,0<x<rx

2r—x, T <x<2rx

f(X)={

Deduce that



/ Here OA represents the line f(x)=x, AB represents the line

f(x)=(27m-x) and AC represents the line x=n. Note that the graph
is symmetrical about the line AC, which in turn is parallel to y-
axis. Hence the function f(x) is an even function.

Here,

ag= %I{f(x)dx=%;|jf(x)dx
=%;|£xdx: T

a, = l J.f(x) cosnxdx = 2jf(x) cos nxdx
T - T 0

V4

2
— I xcosnxdx

2 (sin nxj_l(—cosnxj "
Vs n n’ o
2
=—en-1]
nrw

Also,

since f(x)cosnx is even.



1 v
b, =— If(x) sin nxdx =0, since f(x)sinnx is odd
7[ -

Thus the Fourier series of f(x) is

T 21 "
Flx) = E+;Z—2[(—1) 1]cos nx

n=1 N

For x=mt , we get

[(—1)” — 1]cos niw

ﬂ_:£+zz—2008(2n—21)ﬂ'
2 2n-1)

Thus,

A
8 = (@2n-1y
7’ 11
—:1+3—2+5—2+ ......

This is the series as required.

5. Obtain the Fourier expansion of

-7 <x<0
f(x) =
x0<x<rmx

Deduce that

Here,



1'0 z
a, = — J.—ﬂdx+.|.xdx} =——
0

r V4
a = I— T cosnxdx + Ixcos nxdx}
L—-7 0

-l -1]
nrmw

0 Vg
b, = l{J.—ﬁsin nxdx+ Ixsin nxdx}
V4

- 0

- i-acy]
n

Fourier series is

2

fix) = % —%Zi:i[(—l)” —1]cosnx + 2[1_2+_1)]sm nx

Note that the point x=0 is a point of discontinuity of f(x). Here f(x") =0, f(x')=-r at x=0. Hence

—[f<x>+f<x )] = (o )= ‘2”

The Fourier expansion of f(x) at x=0 becomes

o0

1
o2z I Ly oy

2 4 7 =n
2 o0 1
0r— > = I=D" 1]
N
Simplifying we get,
7’ B 1
§_1+—2+—2+ ......

6. Obtain the Fourier series of f(x) = 1-x* over the interval (-1,1).

The given function is even, as f(-x) = f(x). Also period of f(x) is 1-(-1)=2



Here

aop= %jf(x)dx = ij(x)dx
-1 0

=2'(|;(1—x2)dx=2{x—x?}

0

"3
1 1
a, = L[f(x) cos(nmx)dx

1
= ij(x)cos(nfzx)dx as f(x) cos(nmx) is even
0

= ZJ (1-x*) cos(nmx)dx

Integrating by parts, we get

Y sinnmx) — COSNIX | —sinnmx 1
an—Z{(l—x{ - j (2x)(—(mz)2 j+( 2)(—(11”)3 HO

) 4(_1)n+1

2_2
nrw

b, = %jf(x) sin( n/x)dx =0, since f(x)sin(n7x) is odd.

-1

The Fourier series of f(x) is

f(x) = §+ii(_l



7. Obtain the Fourier expansion of

1+4—xin—§<x30
3 2

fx) = 1—ﬂmO<x<2
3 2

Deduce that

The period of f(x) is E - _—3 =3
2 2

Also  f(-x) =f(x). Hence f(x) is even

3/2

“T30 I S )dx_3/2

-3/2

= T(l——jdx 0

3/2

j F(x)dx

1 ¢ (nﬂxj
a =—— x)cos| — |dx
" 3/2_-’. F&) 3/2

Also,




Thus

f(x) = iziiz [1 (=" ]cos( 2”37“)

putting x=0, we get

f10)= > L fi—-1y]

y/a— ]
8 1 1
or 1=? 1+§+5—2+ ......
2
1
Thus, %:1+—2+—2+ ......
NOTE

Here verify the validity of Fourier expansion through partial sums by considering an example. We recall
that the Fourier expansion of f(x) = x* over (-, 1) is

2 n
T = (—1)" cosnx
foo="pay LR
3 p— n
Let us define

1
S, (x) = Z( )cosnx



The partial sums correspondingto N=1,2,.....6 are
2

S, (x) = %—4cosx

2
S,(x) = %—4cosx+cos2x

2
Se(x) = ﬂ——4cosx+0052x—icos3x+lcos4x—i0035x+lcosSx
3 9 4 25 9

The graphs of S;, S, , ...S¢ against the graph of f(x) = x* are plotted individually and shown below :
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On comparison, we find that the graph of f(x) = x* coincides with that of S¢ (x). This verifies the validity of
Fourier expansion for the function considered.

Exercise

Check for the validity of Fourier expansion through partial sums along with relevant graphs for other
examples also.

HALF-RANGE FOURIER SERIES

The Fourier expansion of the periodic function f(x) of period 2/ may contain both sine and cosine terms.
Many a time it is required to obtain the Fourier expansion of f(x) in the interval (0,/) which is regarded as
half interval. The definition can be extended to the other half in such a manner that the function
becomes even or odd. This will result in cosine series or sine series only.

Sine series :

Suppose f(x) = ¢(x) is given in the interval (0,/). Then we define f(x) = -¢(-x) in (-/,0). Hence
f(x) becomes an odd function in (-/, /). The Fourier series then is

£ =3 b, sin (?j (11)
2 nmx
where b, = 7! f(x)sin [Tjdx

The series (11) is called half-range sine series over (0,/).

Putting I=mt in (11), we obtain the half-range sine series of f(x) over (0,n) given by

fx) = ib” sin nx

b, = zJ.f(x)sin nxdx
72.0



Cosine series :

Let us define

X
f(x)= {¢( ) in(0,)) ... given
P(—x)
in (-1,0) .....in order to make the function even.

Then the Fourier series of f(x) is given by

f(x) = a—zo + ian cos[?j

where,
2[
a, = — x)dx
0 l{f( )

2 nx
a, = 7£f(X)COS(TjdX

The series (12) is called half-range cosine series over (0,/)

Putting | = win (12), we get

dy  ~
f(x)= —+Zan COSnx
n=1

where

a, = 2-Tf(x)dx
7[0

a, = zj.f(x)cosnxdx n=1,23,.....
Z 0

(12)



Examples :
1. Expand f(x) = x(n-x) as half-range sine series over the interval (0, 7).

We have,

b =2 [ £ (xsin nxdx
7 0

= zJ.(zzx—xz)sin nxdx
72.()

Integrating by parts, we get

b = E|:(7DC B x2{— cos nxj (- 2x{— sin2 nxj . (_2)( cos;lxﬂ”
7 n n n .

- fi-]

3
nrw

The sine series of f(x) is
4 &1 .1
£ == = [1= (1) Jsin nx
Taon
2. Obtain the cosine series of

V4
x,0<x<—
f(x)= 2 over(0, 1)
ﬂ—&z<x<ﬂ
2

Here



™ z
2 T
a, = —| |xdx+ |(x —x)dx |=—

0 7
2 72 %
a, =— Ixcos nxdx + I(ﬂ—x)cosnxdx
Y %

Performing integration by parts and simplifying, we get

2 nr
a =——|1+(=1)" —2cos| —
" n27Z|: D (2 ﬂ

= —%,n = 2,6,10, .....
nrw

Thus, the Fourier cosine series is

T 2[c0s2x cos6x coslOx }
+ + + 0

fx)= 2=
W= 3 52

3. Obtain the half-range cosine series of f(x) = c-x in O<x<c

Here

a, =zj(c—x)dx=c
C()

a, = 2 .[ (c—x) cos(@jdx
cy c

Integrating by parts and simplifying we get,

2
a, == [-1y]

The cosine series is given by



2e & 1 .
=S+ 205 Ll ][_ﬂxj

n=l1
Exercices:

Obtain the Fourier series of the following functions over the specified intervals :

2
1. f(x) = x+% over (-m, )

2.f(x) = 2x + 3x* over (-x, )

2
3.f(x) = (%) over (0, 21)

4. f(x) =x over(-n,n);DeducethatZ:I—lJrg— ....... o0
~ 1 1
5.f(x) = |x| over (-m, m); Deducethat — =—+—+....... o0
8 1 3
T+x,—7<x<0
6. f(x) = over (-m, )
7—-x0<x<rx
Deduce that
s 11
g 2 g T
-1,-r<x<0
7.f(x)=<0,x=0 over (-m, T )
10<x<nrm
Deduce that z:1—l+l— ....... o0
4 3

8.f(x) =xsinx over0<x<2m; Deduce that



2 1 3
znz—l_z

n=2

9.f(x) =

{o,—z <x<0
over (-2, 2)

a0<x<?2
10. f(x) = x(2-x) over (0,3)

11. f(x) = x* over (-1,1)

m,0<x<1
12. f(x) =
T(2—x),1<x<2

Obtain the half-range sine series of the following functions over the specified intervals :

13. f(x) = cosx over (0,m)
14. f(x) = sin°x over (0,7)

15. f(x) = Ix-x> over (0, /)

Obtain the half-range cosine series of the following functions over the specified intervals :
16. f(x) = x* over (0,)
17. f(x) =xsinx  over (0,n)

18. f(x) = (x-1)> over (0,1)

kx0<x< i
19.f(x) = 2

[
k(l—-x),—<x<l
( )2



FOURIER TRANSFORMS

Introduction

Fourier Transform is a technique employed to solve ODE’s, PDE’s,IVP’s, BVP’s and
Integral equations.

The subject matter is divided into the following sub topics :

FOURIER TRANSFORMS
v \ 4 v \ 4
Infinite Sine Cosine Convolution
Fourier Transform Transform Theorem &
Transform Parseval’s
Identity

Infinite Fourier Transform

Let f(x) be a real valued, differentiable function that satisfies the following conditions:
1) f(x) and its derivative f '(X)are continuous , or have only a finite number of

simple discontinu ities in every finite interval, and
2) the integral _ﬂf (x)| dx exists.

Also, let o béo non - zero real parameter. The infinite Fourier Transform of f(x)
is defined by

fla)=Flr()]= [ f e

provided the integral exists.

The infinite  Fourier Transform is also called complex Fourier Transform or
just the Fourier Transform. The inverse Fourier Transform of f () denoted by
F'l[f(a) is defined by

Fli@)= 1= [ fakda

Note : The function f(x) is said to be self reciprocal with respect to Fourier transform

it fla)=fla)



Basic Properties

Below we prove some basic properties of Fourier Transforms:

1. Linearity Property

For any two functions f(x) and ¢(x) (whose Fourier Transforms exist) and any two constants a and b,
Flaf (x)+bg(x)]= aF [ f (x)]+ bF[g(x)]

Proof

By definition, we have
Flaf(x)+bg(x)]= [ laf (x)+ bglx)] e dx

=a I: f(x)e™ ™ dx+ bﬁo #(x) e dx
= aF[f(x)]+bF[p(x)

This is the desired property.

In particular, ifa=b =1, we get

FLf(x)+g()]=FLf (x)]+ Flg(x)]

Again ifa=-b =1, we get



Flf ()= p(x)]= FLf (x)]- Flp(x)

2. Change of Scale Property

If f () = F[f (x)], then for any non - zero constant a, we have
l ;fa

Hr(x)]= _f(_]
o \a

Proof : By definition, we have

Flfal=[" [fla]le=ax @)

Suppose a > 0. let us set ax = u. Then expression (1) becomes

a
a

A= [ )= 2

a
=1f(3J @
a a

Suppose a < 0. If we set again ax = u, then (1) becomes

u
a

A= [T 4

@ a

-5 e an

- —%{ﬁj 3
a a

Expressions (2) and (3) may be combined as

1 ~
Flrtel=L (2]
|a| a This is the desired property

3. Shifting Properties

For any real constant ‘a’,

() Flf(x-a)]=e“f(a)



(ii) F[eiaxf(x)]:f(a+a)
Proof : (i) We have

~n

Flf()]=fla)= [f(x)]e“dx

Hence, F[f(x — a)] = J: [f(x — a)] e dx

Set x-a=t. Then dx = dt.Then,

Flfe=a)l=[ [

o [ e
- o )

ii) We have

fla+a)= Jif(x) "9 iy
_ J‘j‘; [f(x)eiax]eiaxdx

= f:o g(x)eiax dx, where g(x) = f(x)eiax

= Flg(x)]

= Fle* £(x)]

This is the desired result.

4. Modulation Property



I Flf)]=fle)

then, F[f(x)cos ax|= [A(a +a)+ f(a —a)]

N | =

where ‘@’ is a real constant.

Proof : We have

iax + e—iux
COS ax =
2
Hence
F[f(x)cos ax] = F{f(x)( < Ze"‘” ﬂ

~

= % [ f (a + a)+ f (a — a)l by using linearity and shift properties .

This is the desired property.

Note : Similarly

Ff(x)sin ax] = [F(a+a)- Fla—a)

Examples

1.Find the Fourier Transform of the function f(x) = e'a‘x‘ where a >0

For the given function, we have
Ff(x)= fe_a‘x‘em dx

0 . 0 .
:U e~ gie a’x+j0 e~ gie dx}

—00

Using the fact that [x|=x, 0<x <ooand [x|=-x, -00<x <0, we get



Ff(x)]= [J‘Oe“"e"’“ dx + Iow e “e'™ dx}

— J'_Oooe(a+ia)x dx+'|‘0wef(ﬁa)x dx}

e(a+ia)x 0 e—(a—ia)x ’
Na+ia)]. | ~@a-ia)f,

B i 2a
(@® +a?)
2. Find the Fourier Transform of the function

{1, |x|§a
fix) =

0, x|>a

where ‘a’ is a positive constant. Hence evaluate

) © SN X @ COSA X
(D) j da
—o0

sin &
do
a

i [
For the given function, we have
FLFWI=| [ fooe=ax |
_ [ [ e =dx+ j F(x)e' ™ dx + jw f(x)ei“”dx}
= U_aaeiw‘dx}

{22




Thus FU@ﬂ:f@ﬁ:2ﬁm““j )

Inverting f (a)by employing inversion formula, we get

Fl)= [ o[ S0GD ey

27T 9= o

_1 J-oo sin aa(cosax—isin ax)da

T o a
1| ¢~ sin aalcosa x .fe SIn o asin ax
[ s, - s,
| a —oo o

Here, the integrand in the first integral is even and the integrand in the second integral is odd. Hence
using the relevant properties of integral here, we get

o SIN O COS QX

fe= [ = ——da

—00

or
[[" S aaCOSe oy - (x)

KL |x|£a
B 0, |x|>a

Forx =0,a =1, this yields

» Sin &

I da=rx

> g

Since the integrand is even, we have

o SN &
2_[0 . da=rx

or

rosina
0 «



2
3.Find the Fourier Transform of f(ix) =e” 2 X  where 'a'is a positive constant.

2/
_X
Deduce that f(x) =e 2 s self reciprocal with respect to Fourier Transform.

Here

. i
Setting t=ax -—,we get
2a

a

— le_(g%“zj\/;, using gamma function.
a

Fla)= Vz e‘(%az)

a

This is the desired Fourier Transform of f(x).



2.2
For azz% infix) =e @ X

x2

we get f(x) =e and hence,
fla)=~2x e_aé
1 — 1 — _x% _a?
Also putting x = in f(x) =e ", we get fla)=¢ A.
Hence, f(«x) and f(a) are same but for constant multiplication by /27 .
Thus f(a)=f(a)

x‘2
It follows that f{x) =€ 7 is self reciprocal

ASSIGNMENT

Find the Complex Fourier Transforms of the following functions :

X, |x|£a L .
(l)f(x): 0 |x|>awhere a'ls a positive constant

0, x<a
@) f(x)=41

, a<x<bwhere 'a'and 'b'are positive constants
0, Xx>b

B 1—1x], |x|£1
a2—x2, |x|£a
Hf(x)=
@ (X) { 0, |x|>a



O fx)= xe_a‘x‘ where 'a'is a positive constant

©) f(x)=e "
(7) f (x) = cos 2x’

(8) f (x) =sin 3x°

n 2
(9) Find the inverse Fourier Transform of f (a) =e“

FOURIER SINE TRANSFORMS

Let f(x) be defined for all positive values of x.

The integral j: f(x)sin axdx is called the Fourier Sine Transform of f(x). This is denoted
by f,(2) or F[f(x)} Thus

£(@)=Ff(0)]= ] f(x)sin ax dx

The inverse Fourier sine Transform of fs (a)is defined

through th e integral EI: fs (a)sin ax da
V4

This is denoted by f(x) or F'[f,(a)} Thus

fx) =F'[f, (a)] = %J.: fs (a)sin ax dex

Properties

The following are the basic properties of Sine Transforms.

(1) LINEARITY PROPERTY

If ‘@’ and ‘b’ are two constants, then for two functions f(x) and ¢(x), we have

F[af (x)+bg(x)|= aF [ f (x)]+bF,[¢(x)]

Proof : By definition, we have



Flaf (x)+bg(x)] = [ laf (x)+ bg(x)]sin cox dx
= aF[f (x)]+bF [¢(x)]

This is the desired result. In particular, we have

Ff(x)+g(x)]= F.Lr(x)]+ F[p(x)]

and

F[f(x)-¢(x)]= F,[r(x)]- F[#(x)]

(2) CHANGE OF SCALE PROPERTY

If E[f(x)]= fY (@), then for a # 0, we have

Elra)= 27 4)

a

Proof : We have
E [f(ax I f(ax)sin a x dx

I ros(C)(2)
=5fs(%J

Settingax =t , we get

(3) MODULATION PROPERTY

If F[f(x)]= 7 (c) then for a =0, we have

F[f(x)cosax]= 1|}, (@ +a)+ . (a—a)



Proof : We have

F, [f(x)cos ax|= j:f(x)cosaxsm ox dx

N

- ;[ [ #(x)isin (o + a)r +sin(ar - a)x}dx}
= % [ fs (a + a)+ fs (a — a)l by using Linearity property.
EXAMPLES

1. Find the Fourier sine transform of

1, 0<x<a
f(x)z{
0, x>a

For the given function, we have

fs(a)z ansin o x dx +J.w0sin ax dx}

r a
—COSCUCj|

-ax

2.Find the Fourier sine transform of f(x) = ¢

Here

Differentiating with respect to o, we get



—ax
= r ¢ 9 (sin oxx) dx
O x Oa

performing differentiation under the integral sign

0 e*ax
- Io X

—ax
e .
= —{—acosax+asm CUC}
2 2
a +a

X Cos ax dx

00

0

a

a>+a’
Integrating with respect to a, we get

f's (a') —tan"' L+ ¢
a

But fs(a)zO when a=0

..c=0
fs (a)= tan_l(gj
a
3. Find f(x) from the integral equation
1, 0<a<l
[ t(x)sin axdx=12, 1<a<2
0, a=2

Let (o) be defined by



Given

)= f(x)sin axdx= f (a)

Using this in the inversion formula, we get

f(x)= %J.: ¢(a)sh1 ox dx

= i“; ¢(a)sin axda+ Lz ¢(a)sin axda+ I; ¢(a)sin ox da]

:2“15inaxda +I22sinaxda+0}
7 0 1

:£[1+COSX—2COSZ)C]
e

ASSIGNMENT

Find the sine transforms of the following functions
X, O<xxl
(1)f(x): a—-x, l<x<a

0, x>a

(2)f(x) =xe “,a>0

sinx, O<x<a
<3>f(x)={

0, x>a

(4) Solve for f(x) given



l-a, 0<a<l

0, a>1

[, t(x)sin e dx ={

Find the inverse sine transforms of the following functions :

—aa
e
,a>0

) f,(a)=

©)f,(@)=1

FOURIER COSINE TRANSFORMS
Let f(x) be defined for positive values of x. The integral J‘: f (x)cosax dx

is called the Fourier Cosine Transform of f(x) and is denoted by fc (a)or E[ f (x)] Thus

. 2 o
f.(@)=E[f(x)]==] s(x)cos axdx
r
The inverse Fourier Cosine Transform of f («)is defined through

the integral gj: 7 (a)cosa xd . This is denoted by f(x)or Fgl[fc(a)} . Thus
7

f(x)=F' [f(a)]:%.[:ﬁ(a)cosa xda

Basic Properties

The following are the basic properties of cosine transforms :

(1) Linearity property

f 'a"and 'b' are two constants, then for two functions f(x) and ¢(x), we have

B [AF(6) - b)) (£ 06 )+ b7 ()

(2) Change of scale property




If E {f(x)} = fc (), then for a # 0, we have
E [f(ax)]:llgC e
a \a

C

(3) Modulation property

If F, {f(x)} = fc (), then for a # 0, we have
E [f(x)cos ax] = % [fc (a+a)+ fc (a— a)]

C

The proofs of these properties are similar to the proofs of the corresponding properties
of Fourier Sine Transforms.

Examples
(1) Find the cosine transform of the function
X, O<xxl

fx)=42-x, 1<x<2
0, x>2

We have

fc (a) = I: f(x)cos oxdx

0

= UI xcos axdx + f (2 - x)cos axdx + J:E Ocos axdx]

Integrating by parts, we get

fc<a>=[{x(si“;“j(";’i“’“j};+{<2x)(smfj“)(Ciimj}]

B {2005a—cos2a —1}

2
(94

(2) Find the cosine transform of f(x) =e™*,a > 0. Hence evaluate

o cOs kx
j - 2dx
0 x“+a

Here



f, (a)= J: e cos axdx
—ax

ﬁ{—acosax+asin ax}}

o0

a t+a

o)

Using the definition of inverse cosine transform, we get

2 a
f(X) = ;J‘O (mj cosaxda

0

or

2a

V. ®© COSax
=] S da
Ya“+a

Changing x to k, and o to x, we get

© coskx me
I - dx =
0 x“+a 2a

(4) Solve the integral equation

I;O f(x)cosax dx = e™*

Let (o) be defined by

d(a) = e™*

Given ¢(a)= I:f(x)cosax dx = fe ()

Using this in the inversion formula, we get



f(x)= 72z Iow #(a)cos axda

o0
= —j e ““ cosaxda
(0]

-2y [a - {_acosaxmsmax}}

ASSIGNMENT

Find the Fourier Cosine Transforms of the following functions :

4x, O<x<l
(Hfix) =24—x, 1<x<4
0, x>4

2 f(x)=e*",a>0

cosx, O<x<a
(3 f(x) ={
0, x>a

@ f(x)=xe™, a>0
) f(x)=——

1+x
6) f(x )_ cost
(7) Solve for f(x) given

l-a, 0La<l

0, a>1

J:Of(x)cosaxdx:{

(8) Show that

7Z"a2 +x2 ’

[ee}

(0]



(1) Fc[f(x)sin ax]: ! [fs(a+a)+ As(a—a)J

S]]

(i) Fs[f(x)sin ax]:%[fc(a—a)— Ac(a—a)]

CONVOLUTION
Let f(x) and g(x) be two functions such that J._Oo f(x)dx and f g(x)dx exist.

Then the integral

[ o) gle)at

is called the convolution of f(x) and g(x), and is denoted by f * g. Thus

Fre=[" flx-1)glt)dr

Note that f * g is a function of x

Properties

l.f*g=g*f
2.£*(g+h)=(f*g)+(f*h)

Convolution Theorem

Let f(a)and g(a) be the Fourier Transforms of f(x) and g(x) respective ly. Then
Hf *g]=f(e) §(@)

The convolution theorem may also be rewritten as

£*g=F'[f(a)2()

Parseval’s Identity

A direct consequence of convolution theorem is Parseval’s identity. The Parseval’s identities in respect
of Fourier transforms, sine transforms and cosine transforms are as indicated below :



Fourier Transforms:

Fourier Sine Transforms:

Fourier CosineTransforms:

Examples

@ [ fla)s(a)da =" f(x)g(x)dx
i) da=["|r(

@[ f(a)gl@)da=]" f(x)s(x)dr
fs(a)( da =" |f(xfdx

@[ fla)éla)da=]" flx)s(x)dr
fg(og)(2 da=["|f(x) dx

(1) Employ convolution theorem to find the inverse Fourier Transform of

We recall the result

For a=2, 3, we get

1
(a +4)(0: +9)

Let f (—) g (—)1

Al

4 - e
d (a2+a2)_[ a j

or




a’+4 2
o 1 . e M
Fl )= 8@)=| 5| =8

Convolution theorem is

| QS P
=— | e dt
12 .

2.Employ Parseval sidentity t o evaluate .[o
1, |x<1

given that f(x) = {O, |x| o1

For the given function, we have

A 1 1 o 1 Zal

s

Parseval’s identity for Fourier Transforms is




[ 1) ax= j_i‘f(a)fda

or

or

or

da=rx

J-oo sin > o

or

» 8in 2 o
[ —

\ do = % ,as the integrand on the L.H.S.is even.
a

Replacing o by x, we get

rosinzxdxzrzr

0 x?
ASSIGNMENT

1. Given that Fle™ |=

1
find F'| ———
¢ &)]

2. Use Parseval’s identity to prove the following :

® '[(X +1ix +4i

o
e 2

> » employ convolutio n theorem

X T
(i) dx=—, a>0
'([(X2+a2)2 4
. 1= X, <1 (1- cosx) o
(lv)Iff(x)—{ 0. [>1° , Prove thatJ‘ x dx—g



UNIT-V
APPLICATIONS OF PDE
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