
DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 1

 AVN INSTITUTE OF ENGINEERING & TECHNOLOGY::HYDERABAD

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

OOPs through JAVA Lecture Notes

 By

DAYAKAR GURRAM

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 2

1-UNIT

Need for oop paradigm

• The object oriented paradigm is a methodology for producing reusable software
components

• The object-oriented paradigm is a programming methodology that promotes the efficient

design and development of software systems using reusable components that can be

quickly and safely assembled into larger systems.

• Object oriented programming has taken a completely different direction and will place an
emphasis on object s and information. With object oriented programming, a problem will

be broken down into a number of units .these are called objects .The foundation of oop is

the fact that it will place an emphasis on objects and classes. There are number of

advantages to be found with using the oop paradigm, and some of these are oop paradigm

• Object oriented programming is a concept that was created because of the need to
overcome the problems that were found with using structured programming techniques.

While structured programming uses an approach which is top down, oop uses an
approach which is bottom up.

• A paradigm is a way in which a computer language looks at the problem to be solved.

We divide computer languages into four paradigms: procedural, object-oriented,

functional and declarative

• A paradigm shift from a function-centric approach to an object-centric approach to
software development

• A program in a procedural paradigm is an active agent that uses passive objects that we

refer to as data or data items.

• The basic unit of code is the class which is a template for creating run-time objects.

• Classes can be composed from other classes. For example, Clocks can be constructed as
an aggregate of Counters.

• The object-oriented paradigm deals with active objects instead of passive objects. We

encounter many active objects in our daily life: a vehicle, an automatic door, a

dishwasher and so on. The actions to be performed on these objects are included in the

object: the objects need only to receive the appropriate stimulus from outside to perform

one of the actions.

• A file in an object-oriented paradigm can be packed with all the procedures—called
methods in the object-oriented paradigm—to be performed by the file: printing, copying,

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 3

deleting and so on. The program in this paradigm just sends the corresponding request to
the object

• Java provides automatic garbage collection, relieving the programmer of the need to

ensure that unreferenced memory is regularly deallocated.

Object Oriented Paradigm – Key Features

• Encapsulation

• Abstraction

• Inheritance

• Polymorphis

A Way of viewing World- Agents

• The word agent has found its way into a number of technologies. It has been applied to

aspects of artificial intelligence research and to constructs developed for improving the

experience provided by collaborative online social environments (MUDS, MOOs, and the

like). It is a branch on the tree of distributed computing. There are agent development

toolkits and agent programming languages.

• The Agent Identity class defines agent identity. An instance of this class uniquely
identifies an agent. Agents use this information to identify the agents with whom they are
interested in collaborating.

• The Agent Host class defines the agent host. An instance of this class keeps track of

every agent executing in the system. It works with other hosts in order to transfer agents.

• The Agent class defines the agent. An instance of this class exists for each agent
executing on a given agent host.

• OOP uses an approach of treating a real world agent as an object.

• Object-oriented programming organizes a program around its data (that is, objects) and a

set of well-defined interfaces to that data.

• An object-oriented program can be characterized as data controlling access to code by
switching the controlling entity to data.

Responsibility

• In object-oriented design, the chain-of-responsibility pattern is a design pattern consisting
of a source of command objects and a series of processing objects..

• Each processing object contains logic that defines the types of command objects that it
can handle; the rest are passed to the next processing object in the chain. A mechanism
also exists for adding new processing objects to the end of this chain.

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 4

• Primary motivation is the need for a platform-independent (that is, architecture- neutral)

language that could be used to create software to be embedded in various consumer
electronic devices, such as microwave ovens and remote controls.

• Objects with clear responsibilities

• Each class should have a clear responsibility.

• If you can't state the purpose of a class in a single, clear sentence, then perhaps your class
structure needs some thought.

• In object-oriented programming, the single responsibility principle states that every
class should have a single responsibility, and that responsibility should be entirely

encapsulated by the class. All its services should be narrowly aligned with that
responsibility.

Messages

• Message implements the Part interface. Message contains a set of attributes and a
"content".

• Message objects are obtained either from a Folder or by constructing a new Message
object of the appropriate subclass. Messages that have been received are normally
retrieved from a folder named "INBOX".

• A Message object obtained from a folder is just a lightweight reference to the actual
message. The Message is 'lazily' filled up (on demand) when each item is requested from
the message.

• Note that certain folder implementations may return Message objects that are pre-filled

with certain user-specified items. To send a message, an appropriate subclass of Message
(e.g., Mime Message) is instantiated, the attributes and content are filled in, and the

message is sent using the Transport. Send method.
• We all like to use programs that let us know what's going on. Programs that keep us

informed often do so by displaying status and error messages.
• These messages need to be translated so they can be understood by end users around the

world.

• The Section discusses translatable text messages. Usually, you're done after you move a
message String into a Resource Bundle.

• If you've embedded variable data in a message, you'll have to take some extra steps to

prepare it for translation.

Methods

• The only required elements of a method declaration are the method's return type, name,
a pair of parentheses, (), and a body between braces, {}.

• Two of the components of a method declaration comprise the method signature—the
method's name and the parameter types.

• More generally, method declarations have six components, in order:

• Modifiers—such as public, private, and others you will learn about later.

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 5

• The return type—the data type of the value returned by the method, or void if the method

does not return a value.

• The method name—the rules for field names apply to method names as well, but the
convention is a little different.

• The parameter list in parenthesis—a comma-delimited list of input parameters, preceded

by their data types, enclosed by parentheses, (). If there are no parameters, you must use
empty parentheses.

• The method body, enclosed between braces—the method's code, including the

declaration of local variables, goes here.

Naming a Method
Although a method name can be any legal identifier, code conventions restrict method

names. By convention, method names should be a verb in lowercase or a multi-word
name that begins with a verb in lowercase, followed by adjectives, nouns, etc. In multi-

word names, the first letter of each of the second and following words should be

capitalized. Here are some examples:

run
run Fast getBackground

getFinalData compareTo

setX isEmpty

Typically, a method has a unique name within its class. However, a method might have
the same name as other methods due to method overloading.

Overloading Methods

• The Java programming language supports overloading methods, and Java can distinguish

between methods with different method signatures. This means that methods within a

class can have the same name if they have different parameter lists (there are some

qualifications to this that will be discussed in the lesson titled "Interfaces and

Inheritance").

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 6

• In the Java programming language, you can use the same name for all the drawing

methods but pass a different argument list to each method. Thus, the data drawing class

might declare four methods named draw, each of which has a different parameter list.

• Overloaded methods are differentiated by the number and the type of the arguments
passed into the method.

• You cannot declare more than one method with the same name and the same number and

type of arguments, because the compiler cannot tell them apart.

• The compiler does not consider return type when differentiating methods, so you cannot
declare two methods with the same signature even if they have a different return type.

• Overloaded methods should be used sparingly, as they can make code much less

readable.

Classes

• In object-oriented terms, we say that your bicycle is an instance of the class of objects

known as bicycles. A class is the blueprint from which individual objects are created.

• Java classes contain fields and methods. A field is like a C++ data member, and a method
is like a C++ member function. In Java, each class will be in its own .java file.

Each field and method has an access level:

• private: accessible only in this class

• (package): accessible only in this package

• protected: accessible only in this package and in all subclasses of this class

• public: accessible everywhere this class is available

• Each class has one of two possible access levels:

• (package): class objects can only be declared and manipulated by code in this package

• Public: class objects can be declared and manipulated by code in any package.

• Object: Object-oriented programming involves inheritance. In Java, all classes (built-in

or user-defined) are (implicitly) subclasses of Object. Using an array of Object in the List
class allows any kind of Object (an instance of any class) to be stored in the list.

However, primitive types (int, char, etc) cannot be stored in the list.

• A method should be made static when it does not access any of the non-static fields of the
class, and does not call any non-static methods.

• Java class objects exhibit the properties and behaviors defined by its class. A class can

contain fields and methods to describe the behavior of an object. Current states of a
class‗s corresponding object are stored in the object‗s instance variables.

•

Creating a class:

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 7

A class is created in the following way

Class <class name>

{

Member variables;

Methods;

}
• An object is a software bundle of related state and behavior. Software objects are often

used to model the real-world objects that you find in everyday life. This lesson explains

how state and behavior are represented within an object, introduces the concept of data
encapsulation, and explains the benefits of designing your software in this manner.
Class Variables – Static Fields

• We use class variables also know as Static fields when we want to share characteristics

across all objectswithin a class. When you declare a field to be static, only a single

instance of the associated variable is created common to all the objects of that class.

Hence when one object changes the value of a class variable, it affects all objects of the

class. We can access a class variable by using the name of the class, and not necessarily

using a reference to an individual object within the class. Static variables can be accessed

even though no objects of that class exist. It is declared using static keyword.

Class Methods – Static Methods
Class methods, similar to Class variables can be invoked without having an instance of

the class. Class methods are often used to provide global functions for Java programs. For
example, methods in the java.lang.Math package are class methods. You cannot call non-

static methods from inside a static method.

Bundling code into individual software objects provides a number of benefits, including:

• Modularity: The source code for an object can be written and maintained independently

of the source code for other objects. Once created, an object can be easily passed around
inside the system.

• Information-hiding: By interacting only with an object's methods, the details of its

internal implementation remain hidden from the outside world.

• Code re-use: If an object already exists (perhaps written by another software developer),
you can use that object in your program. This allows specialists to implement/test/debug
complex, task-specific objects, which you can then trust to run in your own code.

• Pluggability and debugging ease: If a particular object turns out to be problematic, you

can simply remove it from your application and plug in a different object as its
replacement. This is analogous to fixing mechanical problems in the real world. If a bolt

breaks, you replace it, not the entire machine.
An instance or an object for a class is created in the following way
<object name>=new <constructor>();

<class name>

Encapsulation:

• Encapsulation is the mechanism that binds together code and the data it manipulates, and

keeps both safe from outside interference and misuse.

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 8

• One way to think about encapsulation is as a protective wrapper that prevents the code

and data from being arbitrarily accessed by other code defined outside the wrapper.

• Access to the code and data inside the wrapper is tightly controlled through a well-
defined interface.

• To relate this to the real world, consider the automatic transmission on an automobile.

• It encapsulates hundreds of bits of information about your engine, such as how much we

are accelerating, the pitch of the surface we are on, and the position of the shift.
• The power of encapsulated code is that everyone knows how to access it and thus can use

it regardless of the implementation details—and without fear of unexpected side effects.

Polymorphism:

Polymorphism (from the Greek, meaning ―many forms‖) is a feature that allows one
interface to be used for a general class of actions.

• The specific action is determined by the exact nature of the situation. Consider a stack

(which is a last-in, first-out list). We might have a program that requires three types of
stacks. One stack is used for integer values, one for floating-point values, and one for

characters. The algorithm that implements each stack is the same, even though the data
being stored differs.

• In Java we can specify a general set of stack routines that all share the same names.
More generally, the concept of polymorphism is often expressed by the phrase ―one

interface, multiple methods.‖This means that it is possible to design a generic interface to
a group of related activities.

• This helps reduce complexity by allowing the same interface to be used to specify a
general class of action.

• Polymorphism allows us to create clean, sensible, readable, and resilient code.

class Hierarchies (Inheritance):

• Object-oriented programming allows classes to inherit commonly used state and behavior

from other classes. Different kinds of objects often have a certain amount in common

with each other.

• In the Java programming language, each class is allowed to have one direct superclass,
and each superclass has the potential for an unlimited number of subclasses:

• Mountain bikes, road bikes, and tandem bikes, for example, all share the characteristics

of bicycles (current speed, current pedal cadence, current gear). Yet each also defines

additional features that make them different: tandem bicycles have two seats and two sets

of handlebars; road bikes have drop handlebars; some mountain bikes have an additional

chain ring, giving them a lower gear ratio. In this example, Bicycle now becomes the

super class of Mountain Bike, Road Bike, and Tandem Bike.

• The syntax for creating a subclass is simple. At the beginning of your class declaration,
use the extends keyword, followed by the name of the class to inherit from:

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 9

class <sub class> extends <super class> {

// new fields and methods defining a sub class would go here

}

The different types of inheritance are

1. Single level Inheritance.

2. Multilevel Inheritance.

3. Hierarchical inheritance.

4. Multiple inheritance.

5. Hybrid inheritance.
Multiple,hybrid inheritance is not used in the way as other inheritances but it needs a
special concept called interfaces.

Method Binding:

• Binding denotes association of a name with a class.
• Static binding is a binding in which the class association is made during compile time.

This is also called as early binding.
• Dynamic binding is a binding in which the class association is not made until the object is

created at execution time. It is also called as late binding.

Abstraction:
Abstraction in Java or Object oriented programming is a way to segregate

implementation from interface and one of the five fundamentals along with
Encapsulation, Inheritance, Polymorphism, Class and Object.

• An essential component of object oriented programming is Abstraction

• Humans manage complexity through abstraction.
• For example people do not think a car as a set of tens and thousands of individual parts.

They think of it as a well defined object with its own unique behavior.
• This abstraction allows people to use a car ignoring all details of how the engine,

transmission and braking systems work.
• In computer programs the data from a traditional process oriented program can be

transformed by abstraction into its component objects.
• A sequence of process steps can become a collection of messages between these

objects.Thus each object describes its own behavior.

Overriding:
• In a class hierarchy when a sub class has the same name and type signature as a method

in the super class, then the method in the subclass is said to override the method in the
super class.

• When an overridden method is called from within a sub class, it will always refer to the
version of that method defined by the sub class.

• The version of the method defined by the super class will be hidden.

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 10

Exceptions:

• An exception is an abnormal condition that arises in a code sequence at run time.

• In other words an exception is a run time error.
• A java exception is an object that describes an exceptional condition that has occurred in a

piece of code.
• When an exceptional condition arises, an object representing that exception is created and

thrown in the method that caused the error.
• Now the exception is caught and processed.

Summary of oops concepts

• Object-oriented programming (OOP) is a programming paradigm that represents

concepts as "objects" that have data fields (attributes that describe the object) and

associated procedures known as methods. Objects, which are usually instances of classes,
are used to interact with one another to design applications and computer programs.

• Object-oriented programming is an approach to designing modular, reusable software
systems.

• The goals of object-oriented programming are:
• Increased understanding.

• Ease of maintenance

• Ease of evolution.

• Object orientation eases maintenance by the use of encapsulation and information hiding.
•

Object-Oriented Programming – Summary of Key Terms

Definitions of some of the key concepts in Object Oriented Programming(OOP).

Term Definition

Abstract A user-defined data type, including both attributes (its state)
Data Type and methods (its behaviour). An object oriented language will

 include means to define new types (see class) and create
 instances of those classes (see object). It will also provide a

 number of primitive types.

Aggregation Objects that are made up of other objects are known as

aggregations. The relationship is generally of one of two types:

 • Composition – the object is composed of other objects. This

 form of aggregation is a form of code reuse. E.g. A Car is

 composed of Wheels, a Chassis and an Engine

 • Collection – the object contains other objects. E.g. a List

 contains several Items; A Set several Members.

 Attribute A characteristic of an object. Collectively the attributes of an

 object describe its state. E.g. a Car may have attributes of

http://en.wikipedia.org/wiki/Object_(computer_science)
http://en.wikipedia.org/wiki/Class_(computer_science)

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 11

 Speed, Direction, Registration Number and Driver.

 Class The definition of objects of the same abstract data type. In Java
 class is the keyword used to define new types.

 Dynamic The identification at run time of which version of a method is
 (Late) being called (see polymorphism). When the class of an object
 Binding cannot be identified at compile time, it is impossible to use

 static binding to identify the correct object method, so dynamic
 binding must be used.

 Encapsulation The combining together of attributes (data) and methods
 (behaviour/processes) into a single abstract data type with a

 public interface and a private implementation. This allows the
 implementation to be altered without affecting the interface.

 Inheritance The derivation of one class from another so that the attributes
 and methods of one class are part of the definition of another

 class. The first class is often referred to the base or parent class.

 The child is often referred to as a derived or sub-class.

 Derived classes are always ‗a kind of‗ their base classes.

 Derived classes generally add to the attributes and/or behaviour

 of the base class. Inheritance is one form of object-oriented

 code reuse. E.g. Both Motorbikes and Cars are kinds of

 MotorVehicles and therefore share some common attributes

 and behaviour but may add their own that are unique to that

 particular type.

 Interface The behaviour that a class exposes to the outside world; its
 public face. Also called its ‗contract‗. In Java interface is also a

 keyword similar to class. However a Java interface contains no

 implementation: it simply describes the behaviour expected of

 a particular type of object, it doesn‗t so how that behaviour

 should be implemented.

 Member See attribute

Variable

 Method The implementation of some behaviour of an object.

 Message The invoking of a method of an object. In an object-oriented
 application objects send each other messages (i.e. execute each

 others methods) to achieve the desired behaviour.

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 12

Object An instance of a class. Objects have state, identity and

 behaviour.

Overloading Allowing the same method name to be used for more than one

 implementation. The different versions of the method vary

 according to their parameter lists. If this can be determined at

 compile time then static binding is used, otherwise dynamic
 binding is used to select the correct method as runtime.

Polymorphism Generally, the ability of different classes of object to respond

to the same message in different, class-specific ways.

 Polymorphic methods are used which have one name but

 different implementations for different classes. E.g. Both the

 Plane and Car types might be able to respond to a turnLeft

 message. While the behaviour is the same, the means of

 achieving it are specific to each type.

Primitive The basic types which are provided with a given object-

Type oriented programming language. E.g. int, float, double, char,

 Boolean

Static(Early) The identification at compile time of which version of a

Binding polymorphic method is being called. In order to do this the

 compiler must identify the class of an object.

Java was conceived by James gosling, Patrick Naughton, chriswarth, Ed frank and Mike
Sheridan at sun Microsystems.

The original impetus for java was not internet instead primary motivation was the need
for a platform independent (i.e. Architectural neutral) independent language.

Java’s Byte code:

The key that allows java to solve the both security and portability problems is that the

output of a java compiler is not executable code rather it is byte code.

Byte code is highly optimized set of instructions designed to be executed by java runtime

systems, which is called Java Virtual Machine (JVM). JVM is interpreter for byte code.

Translating a java program into byte code helps makes it much easier to run a Program in

a wide variety of environments. The reason is straightforward: only the JVM needs to be

implemented for each platform. Once the run-time package exists for a given system, any

Java program can run on it.

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 13

The Java Buzzwords:
No discussion of the genesis of Java is complete without a look at the Java buzzwords.
Although the fundamental forces that necessitated the invention of Java are portability

and security, other factors also played an important role in mol ding the final form of the
language. The key considerations were summed up by the Java team in the following list

of buzzwords:

• Simple

• Secure

• Portable

• Object-oriented

• Robust

• Multithreaded

• Architecture-neutral

• Interpreted

• High performance

• Distributed

• Dynamic

Simple
Java was designed to be easy for the professional programmer to learn and use

effectively. Assuming that you have some programming experience, you will not find

Java hard to master. If you already understand the basic concepts of object-oriented

programming, learning Java will be even easier. Best of all, if you are an experienced

C++ programmer, moving to Java will require very little effort. Because Java inherits the

C/C++ syntax and many of the object-oriented features of C++

Robust
The multiplatform environment of the Web places extraordinary demands on a program,
because the program must execute reliably in a variety of systems. Thus, the ability to
create robust programs were given a high priority in the design of Java.
To gain reliability, Java restricts you in a few key areas, to force you to find your

mistakes early in program development. At the same time, Java frees you from having to

worry about many of the most common causes of programming errors. Because Java is a

strictly typed language, it checks your code at compile time. However, it also checks your

code at run time. To better understand how Java is robust, consider two of the main

reasons for program failure: memory management mistakes and mishandled exceptional

conditions (that is, run-time errors). Memory management can be a difficult, tedious task

in traditional programming environments. For example, in C/C++, the programmer must

manually allocate and free all dynamic memory. This sometimes leads to problems,

because programmers will either forget to free memory that has
been previously allocated or, worse, try to free some memory that another part of their
code is still using. Java virtually eliminates these problems by managing memory
allocation and deallocation for you. (In fact, deallocation is completely automatic,

SVECW IT DEPT Page

13

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 14

because Java provides garbage collection for unused objects.) Exceptional conditions in
traditional environments often arise in situations such as division by zero or ―file not

found,‖ and they must be managed with clumsy and hard-to-read constructs. Java helps

in this area by providing object-oriented exception handling. In a well-written Java
program, all run-time errors can—and should—be managed by your program.

Multithreaded
Java was designed to meet the real-world requirement of creating interactive, networked
programs. To accomplish this, Java supports multithreaded programming, which allows
you to write programs that do many things simultaneously.

Architecture-Neutral
A central issue for the Java designers was that of code longevity and portability. One of

the main problems facing programmers is that no guarantee exists that if you write a

program today, it will run tomorrow—even on the same machine. Operating system

upgrades, processor upgrades, and changes in core system resources can all combine to

make a program malfunction. The Java designers made several hard decisions in the Java

language and the Java Virtual Machine in an attempt to alter this situation. Their goal was

―write once; run anywhere, anytime, forever.‖ To a great extent, this goal was

accomplished.

Interpreted and High Performance
Java enables the creation of cross-platform programs by compiling into an intermediate

representation called Java byte code. This code can be interpreted on any system that

provides a Java Virtual Machine. Most previous attempts at cross platform solutions have

done so at the expense of performance. Java was engineered for interpretation, the Java

byte code was carefully designed so that it would be easy to translate directly into native

machine code for very high performance by using a just-in-time compiler. Java run-time

systems that provide this feature lose none of the benefits of the platform-independent

code. ―High-performance cross-platform‖ is no longer an oxymoron.

Distributed
Java is designed for the distributed environment of the Internet, because it handles

TCP/IP protocols. In fact, accessing a resource using a URL is not much different from

accessing a file. The original version of Java (Oak) included features for intraaddress-

space messaging. This allowed objects on two different computers to execute procedures

remotely. Java revived these interfaces in a package called Remote Method Invocation

(RMI). This feature brings an unparalleled level of abstraction to client/server

programming.

Dynamic
Java programs carry with them substantial amounts of run-time type information that is
used to verify and resolve accesses to objects at run time. This makes it possible to
dynamically link code in a safe and expedient manner. This is crucial to the robustness of

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 15

the applet environment, in which small fragments of byte code may be dynamically
updated on a running system.

Security
Every time that you download a ―normal‖ program, you are risking a viral infection.

Even so, most users still worried about the possibility of infecting their systems with a

virus. In addition to viruses, another type of malicious program exists that must be

guarded against. This type of program can gather private information, such as credit card

numbers, bank account balances, and passwords, by searching the contents of your

computer‗s local file system. Java answers both of these concerns by providing a

―firewall‖ between a networked application and your computer. When you use a Java-

compatible Web browser, you can safely download Java applets without fear of viral

infection or malicious intent. Java achieves this protection by confining a Java program to

the Java execution environment and not allowing it access to other parts of the computer.

Portability
Many types of computers and operating systems are in use throughout the world—and

many are connected to the Internet. For programs to be dynamically downloaded to all

the various types of platforms connected to the Internet, some means of generating
portable executable code is needed. As you will soon see, the same mechanism that helps

ensure security also helps create portability.

Data Types:

Java defines eight simple types of data: byte, short, int, long, char, float, double, and

Boolean. These can be put in four groups:
• Integers this group includes byte, short, int, and long, which are for whole valued signed

numbers.
• Floating-point numbers this group includes float and double, which represent numbers

with fractional precision.
• Characters this group includes char, which represents symbols in a character set, like

letters and numbers.
• Boolean this group includes Boolean, which is a special type for representing true/false

values.
Integers:
The width and ranges of these integer types vary widely, as shown in this table:

Name Width Range

long 64 –9,223,372,036,854,775,808 to

 9,223,372,036,854,775,807

int 32 –2,147,483,648 to 2,147,483,647

short 16 –32,768 to 32,767

byte 8 –128 to 127

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 16

Floating-point:
There are two kinds of floating-point types, float and double, which represent single- and
double-precision numbers, respectively. Their width and ranges are shown here:

Name Width in Bits Approximate Range

double 64 4.9e–324 to 1.8e+308

float 32 1.4e−045 to 3.4e+038

Variables:
The variable is the basic unit of storage in a Java program. A variable is defined by the
combination of an identifier, a type, and an optional initializer. In addition, all variables

have a scope, which defines their visibility, and a lifetime. In Java, all variables must be

declared before they can be used. The basic form of a variable declaration is shown here:

type identifier [= value][, identifier [= value] ...];

The type is one of Java‗s atomic types, or the name of a class or interface. The identifier
is the name of the variable. You can initialize the variable by specifying an equal sign

and a value. To declare more than one variable of the specified type, use a comma-

separated list.

Here are several examples of variable declarations of various types. Note that some
include an initialization.
int a, b, c; // declares three ints, a, b, and c.

int d = 3, e, f = 5; // declares three more ints

byte z = 22; // initializes z.

double pi = 3.14159; // declares an approximation of pi.

char x = 'x'; // the variable x has the value 'x'.

The Scope and Lifetime of Variables:
All of the variables used till now have been declared at the start of the main() method.

However, Java allows variables to be declared within any block. A block is begun with

an opening curly brace and ended by a closing curly brace. A block defines a scope.

Thus, each time you start a new block, you are creating Scope determines what objects

are visible to other parts of your program. It also determines the lifetime of those objects.

Most other computer languages define two general categories of scopes: global and local.

The scope defined by a method begins with its opening curly brace. However, if that

method has parameters, they too are included within the method‗s scope. variables

declared inside a scope are not visible (that is, accessible)to code that is defined outside

that scope. Thus, when you declare a variable within a scope, you are localizing that

variable and protecting it from unauthorized access and/or modification. Scopes can be

nested. For example, each time you create a block of code, you are creating a new, nested

scope. When this occurs, the outer scope encloses the inner scope. This means that

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 17

objects declared in the outer scope will be visible to code within the inner scope.
However, the reverse is not true. Objects declared within the inner scope will not be
visible outside it.

To understand the effect of nested scopes, consider the following program:
// demonstrate block
scope. class Scope
{

public static void main(String args[])

{

int x; // known to all code within main

x = 10;

if(x == 10)
{ // start new scope

int y = 20; // known only to this block
// x and y both known here.
System.out.println("x and y: " + x + " " +
y); x = y * 2;

}

// y = 100; // Error! y not known here
// x is still known here.
System.out.println("x is " + x);

}}
As the comments indicate, the variable x is declared at the start of main()‗s scope and is

accessible to all subsequent code within main(). Within the if block, y is declared. Since

a block defines a scope, y is only visible to other code within its block. This is why

outside of its block, the line y = 100; is commented out. If you remove the leading

comment symbol, a compile-time error will occur, because y is not visible outside of its

block. Within the if block, x can be used because code within a block (that is, a nested

scope) has access to variables declared by an enclosing scope.
Here is another important point to remember: variables are created when their scope is

entered and destroyed when their scope is left. This means that a variable will not hold its

value once it has gone out of scope. Therefore, variables declared within a method will

not hold their values between calls to that method. Also, a variable declared within a

block will lose its value when the block is left. Thus, the lifetime of a variable is confined

to its scope. If a variable declaration includes an initializer, then that variable will be

reinitialized each time the block in which it is declared is entered. For example, consider

the next program.

// Demonstrate lifetime of a
variable. class Lifetime
{

public static void main(String args[])

{

int x;

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 18

for(x = 0; x < 3; x++)

{
int y = -1; // y is initialized each time block is entered
System.out.println("y is: " + y); // this always prints -1
y = 100;
System.out.println("y is now: " + y);

}

}

}

The output generated by this program is shown here:

y is: -1

y is now: 100
y is: -1

y is now: 100

y is: -1

y is now: 100
As you can see, y is always reinitialized to –1 each time the inner for loop is entered.

Even though it is subsequently assigned the value 100, this value is lost.One last point:
Although blocks can be nested, you cannot declare a variable to have the same name as

one in an outer scope.

Arrays:
An array is a group of similar-typed variables that are referred to by a common name.

Arrays of any type can be created and may have one or more dimensions. A specific
element in an array is accessed by its index. Arrays offer a convenient means of grouping

related information.

One-Dimensional Arrays
A one-dimensional array is a list of like-typed variables. To create an array, you first
must create an array variable of the desired type. The general form of a one
dimensional array declaration is
type var-name[];
Here, type declares the base type of the array. For example, the following declares an

array named month with the type ―array of int‖:

int month [];

Although this declaration establishes the fact that month is an array variable, no array
actually exists. In fact, the value of month is set to null, which represents an array with

no value. To link month with an actual, physical array of integers, you must allocate one
using new and assign it to month. new is a special operator that allocates memory. The

general form of new as it applies to one-dimensional arrays appears as follows:

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 19

array-var = new type[size];
Here, type specifies the type of data being allocated, size specifies the number of
elements in the array, and array-var is the array variable that is linked to the array. That
is, to use new to
allocate an array, you must specify the type and number of elements to allocate. The
elements in the array allocated by new will automatically be initialized to zero.

This example allocates a 12-element array of integers and links them to month
month = new int[12];
After this statement executes, month will refer to an array of 12 integers. Further, all
elements in the array will be initialized to zero.

Another way to declare an arrayin single step is

type arr-name=new type[size];

Arrays can be initialized when they are declared. The process is much the same as that

used to initialize the simple types. An array initializer is a list of comma-separated
expressions surrounded by curly braces. The commas separate the values of the array

elements. The array will automatically be created large enough to hold the number of
elements you specify in the array initializer. There is no need to use new.
For example, to store the number of days in each month, we do as
follows // An improved version of the previous program.

class AutoArray

{

public static void main(String args[])

{
int month[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31,30, 31 };

System.out.println("April has " + month[3] + " days."); }

}
When you run this program, in the output it prints the number of days in April. As
mentioned, Java array indexes start with zero, so the number of days in April is month[3]
or 30.
Here is one more example that uses a one-dimensional array. It finds the average of a set
of numbers.
// Average an array of values.
class Average
{

public static void main(String args[])

{
double nums[] = {10.1, 11.2, 12.3, 13.4,
14.5}; double result = 0;

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 20

int i;

for(i=0; i<5; i++)

result = result + nums[i];

System.out.println("Average is " + result / 5);

}

}

Output: Average is:12.3

Multidimensional Arrays
In Java, multidimensional arrays are actually arrays of arrays. To declare a
multidimensional array variable, specify each additional index using another set of square

brackets. For example, the following declares a two-dimensional array variable called
twoD.
int twoD[][] = new int[4][5];

This allocates a 4 by 5 array and assigns it to twoD.

program :
// Demonstrate a two-dimensional
array. class TwoDArray
{

public static void main(String args[])

{
int twoD[][]= new
int[4][5]; int i, j, k = 0;
for(i=0; i<4; i++)
for(j=0; j<5; j++)

{
twoD[i][j] =
k; k++;

}

for(i=0; i<4; i++)

{
for(j=0; j<5; j++)
System.out.print(twoD[i][j] + "
"); System.out.println();
}

}

}

Output:

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19
When you allocate memory for a multidimensional array, you need only specify the
memory for the first (leftmost) dimension. You can allocate the remaining dimensions
separately. We can allocates the second dimension manually.

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 21

int twoD[][] = new int[4][];

twoD[0] = new int[5];

twoD[1] = new int[5];

twoD[2] = new int[5];

twoD[3] = new int[5];
we can creates a two dimensional array in which the sizes of the second dimension are
unequal.
// Manually allocate differing size second dimensions.
class TwoDAgain
{

public static void main(String args[])

{
int twoD[][] = new

int[4][]; twoD[0] = new

int[1]; twoD[1] = new

int[2]; twoD[2] = new

int[3]; twoD[3] = new

int[4];
int i, j, k = 0;
for(i=0; i<4; i++)

for(j=0; j<i+1; j++)
{
twoD[i][j] =
k; k++;
}

for(i=0; i<4; i++)

{
for(j=0; j<i+1; j++)
System.out.print(twoD[i][j] + "
"); System.out.println();
}

}

}

Output:

0

1 2

3 4 5

6 7 8

We can create a three-dimensional array where first index specifies the number of tables,
second one number o0f rows and the third number of columns.
// Demonstrate a three-dimensional
array. class threeDMatrix
{

public static void main(String args[])

{

int threeD[][][] = new int[3][4][5];

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 22

int i, j, k;

for(i=0; i<3; i++)

for(j=0; j<4; j++)

for(k=0; k<5; k++)

threeD[i][j][k] = i * j * k;

for(i=0; i<3; i++)

{

for(j=0; j<4; j++)

{

for(k=0; k<5; k++)

System.out.print(threeD[i][j][k] + " ");
System.out.println();

}

System.out.println();

}

}

}

Output:

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 1 2 3 4

0 2 4 6 8

0 3 6 9 12

0 0 0 0 0

0 2 4 6 8

0 4 8 12 16

0 6 12 18 24

Alternative Array Declaration Syntax
There is a second form that may be used to declare an array:

type[] var-name;
Here, the square brackets follow the type specifier, and not the name of the array
variable. For example, the following two declarations are equivalent: int al[] = new
int[3];
int[] a2 = new int[3];

The following declarations are also equivalent:

char twod1[][] = new char[3][4];

char[][] twod2 = new char[3][4];

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 23

Operators:

Operators are special symbols that perform specific operations on one, two, or three

operands, and then return a result. The operators in the following table are listed

according to precedence order. The closer to the top of the table an operator appears, the

higher its precedence. Operators with higher precedence are evaluated before operators

with relatively lower precedence. Operators on the same line have equal precedence.

When operators of equal precedence appear in the same expression, a rule must govern

which is evaluated first. All binary operators except for the assignment operators are

evaluated from left to right; assignment operators are evaluated right to left.

 Operator Precedence

 Operators Precedence

 Postfix expr++, expr--

 Unary ++expr --expr +expr –expr ~ !

 multiplicative * / %

 additive + -

 shift << >> >>>

 relational < > <= >= instanceof

 equality == !=

 bitwise AND &

 bitwise
^

exclusive OR

 bitwise
|

inclusive OR

 logical AND &&

 logical OR ||

 ternary ? :

 assignment = += -= *= /= %= &= ^= |= <<= >>= >>>=

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 24

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 25

In general-purpose programming, certain operators tend to appear more frequently than
theirs; for example, the assignment operator "=" is far more common than the unsigned
right shift operator ">>>".

Expressions:
An expression is a construct made up of variables, operators, and method invocations,

which are constructed according to the syntax of the language that evaluates to a single
value.

int a = 0;

arr[0] = 100;

System.out.println("Element 1 at index 0: " + arr[0]);

int result = 1 + 2; // result is now 3
if(value1 == value2)

System.out.println("value1 == value2");
The data type of the value returned by an expression depends on the elements used in the

expression. The expression a= 0 returns an int because the assignment operator returns a

value of the same data type as its left-hand operand; in this case, cadence is an int. As you

can see from the other expressions, an expression can return other types of values as well,

such as boolean or String.

For example, the following expression gives different results, depending on whether you
perform the addition or the division operation first:

x + y / 100 // ambiguous
You can specify exactly how an expression will be evaluated using balanced parenthesis
rewrite the expression as

(x + y) / 100 // unambiguous, recommended
If you don't explicitly indicate the order for the operations to be performed, the order is
determined by the precedence assigned to the operators in use within the expression.

Operators that have a higher precedence get evaluated first. For example, the division
operator has a higher precedence than does the addition operator. Therefore, the

following two statements are equivalent:

x + y / 100

x + (y / 100) // unambiguous, recommended
When writing compound expressions, be explicit and indicate with parentheses which
operators should be evaluated first.

Control Statements:

IF Statement

The general form of the if statement:

if (condition) statement1;

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 26

Here, each statement may be a single statement or a compound statement enclosed in
curly braces (that is, a block). The condition is any expression that returns a boolean
value.
If the condition is true, then statement1 is executed. Otherwise,statement2 is executed.

IF –ELSE Statement
The general form of the if statement:

if (condition) statement1;

else statement2;

The if-then-else statement provides a secondary path of execution when an "if" clause
evaluates to false.

void applyBrakes()

{

if (isMoving)

{

currentSpeed--;

}

else
{

System.err.println("The bicycle has already stopped!");

}

}

The switch Statement

Unlike if-then and if-then-else, the switch statement allows for any number of possible

execution paths. A switch works with the byte, short, char, and int primitive data types. It
also works with enumerated types .

Program: displays the name of the month, based on the value of month, using the switch
statement.

class SwitchDemo

{

public static void main(String[] args) {

int month = 8;

switch (month) {

case 1: System.out.println("January");

break;

case 2: System.out.println("February");

break;

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 27

case 3: System.out.println("March");

break;

case 4: System.out.println("April");

break;

case 5: System.out.println("May");

break;

case 6: System.out.println("June");

break;

case 7: System.out.println("July");

break;

case 8: System.out.println("August");
break;

case 9: System.out.println("September");

break;

case 10: System.out.println("October");

break;

case 11: System.out.println("November");

break;

case 12: System.out.println("December");

break;

default: System.out.println("Invalid month.");

break;

}

}

}

Output:"August"

The body of a switch statement is known as a switch block. Any statement immediately
contained by the switch block may be labeled with one or more case or default labels.

The switch statement evaluates its expression and executes the appropriate case.

The while and do-while Statements

The while statement continually executes a block of statements while a particular
condition is true.

Its syntax can be expressed as:

while (expression)

{

statement(s)

}
The while statement evaluates expression, which must return a boolean value. If the
expression evaluates to true, the while statement executes the statement(s) in the while
block. The while statement continues testing the expression and executing its block until

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 28

the expression evaluates to false. Using the while statement to print the values from 1
through 10 can be accomplished as in the following program:

class WhileDemo

{

public static void main(String[] args)

{

int count = 1;

while (count < 11)

{

System.out.println("Count is: " + count);

count++;

}
}

}

do-while statement

Its syntax can be expressed as:

do

{

statement(s)

} while (expression);

The difference between do-while and while is that do-while evaluates its expression at

the bottom of the loop instead of the top. Therefore, the statements within the do block
are always executed at least once.

Program:

class DoWhileDemo

{

public static void main(String[] args){

int count = 1;

do {

System.out.println("Count is: " + count);

count++;

} while (count <= 11);

}
}

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 29

The for Statement

The for statement provides a compact way to iterate over a range of values. Programmers
often refer to it as the "for loop" because of the way in which it repeatedly loops until a
particular condition is satisfied. The general form of the for statement can be expressed as
follows:

for (initialization; termination; increment) {

statement(s)

}
When using the for statement, we need to remember that

• The initialization expression initializes the loop; it's executed once, as the loop begins.

• When the termination expression evaluates to false, the loop terminates.

• The increment expression is invoked after each iteration through the loop; it is perfectly

acceptable for this expression to increment or decrement a value.

Type Conversion and Casting:
We can assign a value of one type to a variable of another type. If the two types are

compatible, then Java will perform the conversion automatically. For example, it is

always possible to assign an int value to a long variable. However, not all types are
compatible, and thus, not all type conversions are implicitly allowed. For instance, there

is no conversion defined from double to byte.
But it is possible for conversion between incompatible types. To do so, you must use a
cast, which performs an explicit conversion between incompatible types.

Java‗s Automatic Conversions

When one type of data is assigned to another type of variable, an automatic type
conversion will take place if the following two conditions are satisfied:

• The two types are compatible.

• The destination type is larger than the source type.
When these two conditions are met, a widening conversion takes place. For example, the
int type is always large enough to hold all valid byte values, so no explicit cast statement
is required.
For widening conversions, the numeric types, including integer and floating-point types,
are compatible with each other. However, the numeric types are not compatible with char
or boolean. Also, char and boolean are not compatible with each other.
Java also performs an automatic type conversion when storing a literal integer constant
into variables of type byte, short, or long.

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 30

Casting Incompatible Types

The automatic type conversions are helpful, they will not fulfil all needs. For example, if

we want to assign an int value to a byte variable. This conversion will not be performed
automatically, because a byte is smaller than an int. This kind of conversion is sometimes

called a narrowing conversion, since you are explicitly making the value narrower so that

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 31

it will fit into the target type. To create a conversion between two incompatible types,

you must use a cast. A cast is simply an explicit type conversion. It has this general form:

(target-type) value

Here, target-type specifies the desired type to convert the specified value to.

Example:

int a;

byte b;

// ...

b = (byte) a;
A different type of conversion will occur when a floating-point value is assigned to an
integer type: truncation. As integers do not have fractional components so,when a
floating-point value is assigned to an integer type, the fractional component is lost.

Program:
class Conversion
{

public static void main(String args[])

{

byte b;

int i = 257;

double d = 323.142;

System.out.println("\nConversion of int to byte.");

b = (byte) i;
System.out.println("i and b " + i + " " + b);
System.out.println("\nConversion of double to
int."); i = (int) d;
System.out.println("d and i " + d + " " + i);
System.out.println("\nConversion of double to
byte."); b = (byte) d;
System.out.println("d and b " + d + " " + b);

}

}

Output:
Conversion of int to byte.

i and b 257 1

Conversion of double to int.

d and i 323.142 323

Conversion of double to byte.

d and b 323.142 67

byte b = 50;

b = (byte)(b * 2);

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 32

The Type Promotion Rules:
In addition to the elevation of bytes and shorts to int, Java defines several type promotion
rules that apply to expressions. They are as follows. First, all byte and short values are

promoted to int. Then, if one operand is a long, the whole expression is promoted to long.
If one operand is a float, the entire expression is promoted to float.If any of the operands

is double, the result is double.
The following program demonstrates how each value in the expression
gets promoted to match the second argument to each binary operator:

class Promote

{

public static void main(String args[])
{

byte b = 42;

char c = 'a';

short s = 1024;

int i = 50000;

float f = 5.67f;

double d = .1234;
double result = (f * b) + (i / c) - (d * s);

System.out.println((f * b) + " + " + (i / c) + " - " + (d * s));

System.out.println("result = " + result); }

}

double result = (f * b) + (i / c) - (d * s);
In the first sub expression, f * b, b is promoted to a float and the result of the sub

expression is float. Next, in the sub expression i / c, c is promoted to int, and the result is

of type int. Then, in d * s, the value of s is promoted to double, and the type of the sub

expression is double. Finally, these three intermediate values, float, int, and double, are

considered. The outcome of float plus an int is a float. Then the resultant float minus the

last double is promoted to double, which is the type for the final result of the expression.

Simple Java Program:

class Example

{

public static void main(String args[])
{

System.out.println("This is a simple Java program.");

}

}
Here public is an access modifier, which means this method can be accessed by any one
out side the class.
Static allows the main () method to be called without initiating any instance for the class.

Void tells the compiler that main() doesnot return any type.

String args[] declares a parameter named args,which is an array of instances of class
string.
args takes the arguments for a command line.

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 33

Classes and Objects:

In the real world, you'll often find many individual objects all of the same kind. There

may be thousands of other bicycles in existence, all of the same make and model. Each

bicycle was built from the same set of blueprints and therefore contains the same

components. In object-oriented terms, we say that your bicycle is an instance of the class

of objects known as bicycles. A class is the blueprint from which individual objects are

created.

Declaring Member Variables

There are several kinds of variables:

• Member variables in a class—these are called fields.

• Variables in a method or block of code—these are called local variables.

• Variables in method declarations—these are called parameters.

A class is declared by use of the class
keyword class classname
{
type instance-variable1;

type instance-variable2;

// ...
type instance-variableN;

type methodname1(parameter-list)

{

// body of method

}

type methodname2(parameter-list)

{

// body of method

}

// ...

type methodnameN(parameter-list)
{

// body of method

}

}
The data, or variables, defined within a class are called instance variables. The code is

contained within methods. Collectively, the methods and variables defined within a class
are called members of the class. In most classes, the instance variables are acted upon and

accessed by the methods defined for that class. Variables defined within a class are called

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 34

instance variables because each instance of the class (that is, each object of the class)
contains its own copy of these variables.Thus, the data for one object is separate and
unique from the data for another.

Example:

Class demo

{

int x=1;;

int y=2;

float z=3;

void display()

{

System.out.println(―values of x, y and z are:‖+x+‖ ―+y‖+‖ ―+z);
}

}

Declaring Objects
when you create a class, you are creating a new data type. You can use this type to

declare objects of that type. However, obtaining objects of a class is a two-step process.

First, you must declare a variable of the class type. This variable does not define an

object. Instead, it is simply a variable that can refer to an object. Second, you must

acquire an actual, physical copy of the object and assign it to that variable. You can do

this using the new operator. The new operator dynamically allocates (that
is, allocates at run time) memory for an object and returns a reference to it. This reference
is, more or less, the address in memory of the object allocated by new.
This reference is then stored in the variable. Thus, in Java, all class objects must be
dynamically allocated.
In the above programs to declare an object of type demo:

Demo d1 = new demo();
This statement combines the two steps just described. It can be rewritten like this
to show each step more clearly:
demo d1; // declare reference to object

d1 = new demo(); // allocate a demo object
The first line declares d1 as a reference to an object of type demo. After this line

executes, d1 contains the value null, which indicates that it does not yet point to an actual

object. Any attempt to use d1 at this point will result in a compile-time error. The next

line allocates an actual object and assigns a reference to it to d1.After the second line

executes; you can use d1 as if it were a demo object. But in reality, d1 simply holds the

memory address of the actual demo object. The effect of these two lines of code is

depicted in Figure.

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 35

Constructors:

A class contains constructors that are invoked to create objects from the class blueprint.

Constructor declarations look like method declarations—except that they use the name

of the class and have no return type. A constructor initializes an object immediately upon
creation.

Constructors can be default or parameterized constructors.

A default constructor is called when an instance is created for a class.

Example

Class demo

{

int x;
int y;

float z;

demo()

{

X=1;

Y=2;

Z=3;

}

void display()

{

System.out.println(―values of x, y and z are:‖+x+‖ ―+y‖+‖ ―+z);

}

}

Class demomain

{

Public static void main(String args[])

{

demo d1=new demo(); // this is a call for the above default constructor

d1.display();

}

}

Parameterized constructor:

Class demo

{

int x;

int y;

float z;

demo(int x1,int y1,int z1)

{

x=x1;

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 36

y=y1;

z=z1;

}

void display()

{

System.out.println(―values of x, y and z are:‖+x+‖ ―+y‖+‖ ―+z);

}

}

Class demomain

{

Public static void main(String args[])

{

demo d1=new demo(1,2,3); // this is a call for the above parameterized constructor
d1.display();

}

}

This Keyword:

Sometimes a method will need to refer to the object that invoked it. To allow this, Java

defines the this keyword. this can be used inside any method to refer to the current

object.That is, this is always a reference to the object on which the method was invoked.

You can use this anywhere a reference to an object of the current class‗ type is permitted.

Example:

Class demo

{

int x;

int y;

float z;

demo(int x,int y,int z)

{

this.x=x;

this.y=y;

this.z=z;

}

void display()

{
System.out.println(―values of x, y and z are:‖+x+‖ ―+y‖+‖ ―+z);

}

}

Class demomain

{

Public static void main(String args[])

{

demo d1=new demo(1,2,3); // this is a call for the above parameterized constructor

d1.display();

}

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 37

}

Output:

Values of x, y and z are:1 2 3
To differentiate between the local and instance variables we have used this keyword int
the constructor.

Garbage Collection:
Since objects are dynamically allocated by using the new operator, objects are destroyed

and their memory released for later reallocation. In some languages, such as C++,

dynamically allocated objects must be manually released by use of a delete operator. Java
takes a different approach; it
handles deallocation for you automatically. The technique that accomplishes this is called

garbage collection. It works like this: when no references to an object exist, that object is

assumed to be no longer needed, and the memory occupied by the object can be

reclaimed. There is no explicit need to destroy objects as in C++. The finalize() Method

Sometimes an object will need to perform some action when it is destroyed. For example,

if an object is holding some non-Java resource such as a file handle or window character

font, then you might want to make sure these resources are freed before an object is

destroyed. To handle such situations, Java provides a mechanism called finalization. By

using finalization, you can define specific actions that will occur when an object is just

about to be reclaimed by the garbage collector.
To add a finalizer to a class, you simply define the finalize() method. The Java run time

calls that method whenever it is about to recycle an object of that class. Inside the

finalize() method you will specify those actions that must be performed before an object

is destroyed. The garbage collector runs periodically, checking for objects that are no

longer referenced by any running state or indirectly through other referenced objects.

Right before an asset is freed, the Java run time calls the finalize() method on the object.

The finalize() method has this general form:

protected void finalize()

{

// finalization code here

}
Here, the keyword protected is a specifier that prevents access to finalize() by code
defined outside its class.

Overloading Methods:
The Java programming language supports overloading methods, and Java can distinguish
between methods with different method signatures. This means that methods within a
class can have the same name if they have different parameter lists .

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 38

Suppose that you have a class that can use calligraphy to draw various types of data

(strings, integers, and so on) and that contains a method for drawing each data type. It is

cumbersome to use a new name for each method—for example, drawString, drawInteger,

drawFloat, and so on. In the Java programming language, you can use the same name for

all the drawing methods but pass a different argument list to each method. Thus, the data

drawing class might declare four methods named draw, each of which has a different

parameter list.

public class DataArtist {

...

public void draw(String s) {

...

}
public void draw(int i) {

...

}

public void draw(double f) {

...

}

public void draw(int i, double f) {
...

}

}
Overloaded methods are differentiated by the number and the type of the arguments

passed into the method. In the code sample, draw(String s) and draw(int i) are distinct

and unique methods because they require different argument types. You cannot declare

more than one method with the same name and the same number and type of arguments,

because the compiler cannot tell them apart.The compiler does not consider return type

when differentiating methods, so you cannot declare two methods with the same

signature even if they have a different return type.

Overloading Constructors:
We can overload constructor methods
class Box {

double width;

double height;

double depth;
// This is the constructor for Box.
Box(double w, double h, double d)
{ width = w;
height =

h; depth =

d;

}
// compute and return volume
double volume() {
return width * height * depth;

}

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 39

}
As you can see, the Box() constructor requires three parameters. This means that all

declarations of Box objects must pass three arguments to the Box() constructor. For

example, the following statement is currently invalid: Box ob = new Box();

Since Box() requires three arguments.
/* Here, Box defines three constructors to

initialize the dimensions of a box various ways. */

class Box {

double width;

double height;
double depth;
// constructor used when all dimensions specified
Box(double w, double h, double d) {
width =

w; height

= h; depth

= d;

}
// constructor used when no dimensions specified
Box() {
width = -1; // use -1 to
indicate height = -1; // an
uninitialized depth = -1; // box
}
// constructor used when cube is created
Box(double len) {
width = height = depth = len;

}

// compute and return volume

double volume() {

return width * height * depth;

}

}

class OverloadCons

{
public static void main(String args[]) {
// create boxes using the various constructors

Box mybox1 = new Box(10, 20, 15);
Box mybox2 = new Box();
Box mycube = new

Box(7); double vol;
// get volume of first box

vol = mybox1.volume();

System.out.println("Volume of mybox1 is " + vol);

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 40

// get volume of second box vol =

mybox2.volume(); System.out.println("Volume of

mybox2 is " + vol); //get volume of cube

vol = mycube.volume();

System.out.println("Volume of mycube is " +

vol);

}

}

Output:
Volume of mybox1 is 3000.0

Volume of mybox2 is -1.0

Volume of mycube is 343.0

Parameter Passing:
In general, there are two ways that a computer language can pass an argument to a
subroutine.
The first way is call-by-valueI.In this method copies the value of an argument into the
formal parameter of the subroutine. Therefore, changes made to the parameter of the
subroutine have no effect on the argument.
The second way an argument can be passed is call-by-reference. In this method, a

reference to an argument (not the value of the argument) is passed to the parameter.
Inside the subroutine, this reference is used to access the actual argument specified in the

call. This means that changes made to the parameter will affect the argument used to call
the subroutine.
Java uses both approaches, depending upon what is passed.
In Java, when you pass a simple type to a method, it is passed by value. Thus, what
occurs to the parameter that receives the argument has no effect outside the
method. For example, consider the following program:
// Simple types are passed by value.
class Test {
void meth(int i, int j)
{ i *= 2;
j /= 2;

}

}

class CallByValue

{

public static void main(String args[])

{
Test ob = new

Test(); int a = 15, b =

20;
System.out.println("a and b before call: " + a + " " +
b); ob.meth(a, b);
System.out.println("a and b after call: " +a + " " + b);

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 41

}

}

output :

a and b before call: 15 20

a and b after call: 15 20
we can see, the operations that occur inside meth() have no effect on the values of a and
b used in the call; their values here did not change to 30 and 10.
When we pass an object to a method, the situation changes dramatically, because objects

are passed by reference. Keep in mind that when you create a variable of a class type, you

are only creating a reference to an object. Thus, when you pass this reference to a

method, the parameter that receives it will refer to the same object as that referred to by

the argument. This effectively means that objects are passed to methods by use of call-

by-reference. Changes to the object inside the method do affect the object used as an
argument.

Example:
// Objects are passed by
reference. class Test {
int a, b;
Test(int i, int j) {
a = i;
b = j;

}

// pass an object

void meth(Test o)

{

o.a *= 2;

o.b /= 2;

}

}

class CallByRef

{

public static void main(String args[])

{

Test ob = new Test(15, 20);
System.out.println("ob.a and ob.b before call: " +ob.a + " " +
ob.b); ob.meth(ob);
System.out.println("ob.a and ob.b after call: " +ob.a + " " + ob.b);
}

}

output:

ob.a and ob.b before call: 15 20

ob.a and ob.b after call: 30 10

in this case, the actions inside meth() have affected the object used as an argument.

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 42

Recursion:

Java supports recursion. Recursion is the process of defining something in terms of itself.
As it relates to Java programming, recursion is the attribute that allows a method to call
itself. A method that calls itself is said to be recursive.
The classic example of recursion is the computation of the factorial of a number.
The factorial of a number N is the product of all the whole numbers between 1 and N.
For example, 3 factorial is 1 × 2 × 3, or 6. Here is how a factorial can be computed

by use of a recursive method:
// A simple example of recursion.
class Factorial
{

// this is a recursive function

int fact(int n)

{

int result;

if(n==1) return 1;

result = fact(n-1) * n;

return result;

}

}

class Recursion {
public static void main(String args[]) { Factorial f

= new Factorial(); System.out.println("Factorial

of 3 is " + f.fact(3));

System.out.println("Factorial of 4 is " +

f.fact(4)); System.out.println("Factorial of 5 is "

+ f.fact(5)); }}
Output:

Factorial of 3 is 6

Factorial of 4 is 24

Factorial of 5 is 120

String Handling:

In Java a string is a sequence of characters. But, unlike many other languages that
implement strings as character arrays, Java implements strings as objects of type String.

Implementing strings as built-in objects allows Java to provide a full complement of

features that make string handling convenient.

when you create a String object, you are creating a string that cannot be changed. That is,
once a String object has been created, you cannot change the characters that comprise
that string. The
difference is that each time you need an altered version of an existing string, a new

String object is created that contains the modifications. The original string is left

unchanged. This approach is used because fixed, immutable strings can be implemented

more efficiently than changeable ones. For those cases in which a modifiable string is

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 43

desired, there is a companion class to String called StringBuffer, whose objects contain

strings that can be modified after they are created.
Both the String and StringBuffer classes are defined in java.lang. Thus, they are
available to all programs automatically. Both are declared final, which means that neither
of these classes may be subclassed.

The String Constructors:
The String class supports several constructors. To create an empty String, you call the
default constructor.

For example,

String s = new String();

will create an instance of String with no characters in it.Frequently, you will want to

create strings that have initial values. The String class provides a variety of constructors

to handle this. To create a String initialized by an array of characters, use the constructor

shown here:

String(char chars[])

Example:

char chars[] = { 'a', 'b', 'c' };

String s = new String(chars);

This constructor initializes s with the string ―abc‖.

You can specify a subrange of a character array as an initializer using the
following constructor:
String(char chars[], int startIndex, int numChars)
Here, startIndex specifies the index at which the subrange begins, and numChars

specifies the number of characters to use. Example:

char chars[] = { 'a', 'b', 'c', 'd', 'e', 'f' };
String s = new String(chars, 2, 3);

This initializes s with the characters cde.

You can construct a String object that contains the same character sequence

as another String object using this constructor: String(String strObj)

Here, strObj is a String object.

String Length:
The length of a string is the number of characters that it contains. To obtain this value,
call the length() method.

int length()

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 44

Example:
char chars[] = { 'a', 'b', 'c' };
String s = new String(chars);

System.out.println(s.length());

It prints 3 as the output since the string as 3 characters.

charAt()
To extract a single character from a String, you can refer directly to an individual

character via the charAt() method. It has this general form: char charAt(int where)

getChars()
If you need to extract more than one character at a time, you can use the getChars()
method. It has this general form:

void getChars(int sourceStart, int sourceEnd, char target[], int targetStart)

equals()
To compare two strings for equality, use equals(). It has this general form:
boolean equals(Object str)
Here, str is the String object being compared with the invoking String object. It returns
true if the strings contain the same characters in the same order, and false otherwise. The

comparison is case-sensitive.
To perform a comparison that ignores case differences, call equalsIgnoreCase().When it
compares two strings, it considers A-Z to be the same as a-z. It has this general form:
boolean equalsIgnoreCase(String str)
Here, str is the String object being compared with the invoking String object.

compareTo()
to know whether two strings are identical. For sorting applications, you need to know
which is less than, equal to, or greater than the next. A string is less than another if it
comes before the other in dictionary order. A string is
greater than another if it comes after the other in dictionary order. The String method

compareTo() serves this purpose. It has this general form: int compareTo(String str)

Here, str is the String being compared with the invoking String.

indexOf()
The String class provides two methods that allow you to search a string for a specified
character or substring:

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 45

• indexOf() Searches for the first occurrence of a character or substring.

• lastIndexOf() Searches for the last occurrence of a character or substring.

substring()
>>we can extract a substring using substring(). It has two forms. The first is
String substring(int startIndex)

>>Here, startIndex specifies the index at which the substring will begin. This form
returns a copy of the substring that begins at startIndex and runs to the end of the
invoking string.

>>The second form of substring() allows you to specify both the beginning and ending
index of the substring:

>>String substring(int startIndex, int endIndex)

Here, startIndex specifies the beginning index, and endIndex specifies the stopping point.
The string returned contains all the characters from the beginning index, up to,but not
including, the ending index.

replace()
The replace() method replaces all occurrences of one character in the invoking string
with another character. It has the following general form: String replace(char original,
char replacement)

StringBuffer Constructors:
StringBuffer defines these three constructors:
StringBuffer()

StringBuffer(int size)

StringBuffer(String str)
• The default constructor (the one with no parameters) reserves room for 16 characters

without reallocation.
• The second version accepts an integer argument that explicitly sets the size of the

buffer. The third version accepts a String argument that sets the initial contents of the

StringBuffer object and reserves room for 16 more characters without reallocation.
• StringBuffer allocates room for 16 additional characters when no specific buffer length

is requested, because reallocation is a costly process in terms of time.
Also, frequent reallocations can fragment memory. By allocating room for a few extra
characters, StringBuffer reduces the number of reallocations that take place.

length() and capacity()
The current length of a StringBuffer can be found via the length() method, while the
total allocated capacity can be found through the capacity() method. They have the
following general forms:
int length()

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 46

int capacity()

ensureCapacity()
If you want to preallocate room for a certain number of characters after a StringBuffer
has been constructed, you can use ensureCapacity() to set the size of the buffer.

ensureCapacity() has this general form:

void ensureCapacity(int capacity)

Here, capacity specifies the size of the buffer

append()
The append() method concatenates the string representation of any other type of data to

the end of the invoking StringBuffer object. It has overloaded versions for all the built-in

types and for Object. Here are a few of its forms: StringBuffer append(String str)

StringBuffer append(int num)

StringBuffer append(Object obj)

String.valueOf() is called for each parameter to obtain its string representation.

insert()

The insert() method inserts one string into another.

StringBuffer insert(int index, String str)

StringBuffer insert(int index, char ch)

StringBuffer insert(int index, Object obj)
Here, index specifies the index at which point the string will be inserted into the
invoking StringBuffer object

reverse()
You can reverse the characters within a StringBuffer object using reverse(), shown
here:
StringBuffer reverse()

This method returns the reversed object on which it was called

delete() and deleteCharAt()
to delete characters using the methods delete() and deleteCharAt(). These methods are
shown here:
StringBuffer delete(int startIndex, int endIndex)

StringBuffer deleteCharAt(int loc)
The delete() method deletes a sequence of characters from the invoking object. Here,
startIndex specifies the index of the first character to remove, and endIndex specifies an

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 47

index one past the last character to remove. Thus, the substring deleted runs from
startIndex to endIndex–1. The resulting StringBuffer object is returned.
The deleteCharAt() method deletes the character at the index specified by loc. It returns
the resulting StringBuffer object

replace()
to replaces one set of characters with another set inside a StringBuffer object. Its
signature is shown here:
StringBuffer replace(int startIndex, int endIndex, String str)
The substring being replaced is specified by the indexes startIndex and endIndex. Thus,
the substring at startIndex through endIndex–1 is replaced.

Hierarchical Abstractions

Example:

• Abstraction consists of eliminating unnecessary detail and concentrating on essential
features

• The concept of an evergreen tree is an abstraction

• Fir trees, Thuya trees, Pine trees, ... have features that are common to all evergreen trees

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 48

• The concept of a deciduous tree is an abstraction
• Maple trees, Oak trees, Apple trees, ... have features that are common to all deciduous

trees

INHERITANCE:

Inheritance is a Java language feature, used to model hierarchical abstraction
Inheritance means taking a class (called the base class) and defining a new class (called
the subclass) by specializing the state and behaviors of the base class
Subclasses specialize the behaviors of their base class

• The subclasses inherit the state and behaviors of their base class

• They can have additional state and behaviors
Inheritance is mainly used for code reusability and to reduce the complexity of the
program.

Base Class:

A class that is being inherited is known as Base class
For ex:
Class x

{

Void method ();

}

class y extends x

{

}

In the above example the class x is known as the base class.

When we create an object for the base class then that object is known as base class object.
Sub class:
The class that is inheriting the base class Is known as sub class.
In the example above since class y is inheriting the class x, class y is known as the
subclass to class x.

Definition of substitutability:
• Assigning derived class object to parent class reference variables is known as

substitutability.
• The concept of substitutability is fundamental to many of the powerful software

development techniques in object oriented programming.
• The idea is that the type given in a declaration of variable doesn‗t have to match the type

associated with value the variable is holding.
• It can also be used through interfaces.

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 49

FORMS OF INHERITANCE:
The choices between inheritance and overriding, subclass and subtypes, mean

that inheritance can be used in a variety of different ways and for different purposes.

Many of these types of inheritance are given their own special names. We will
describe some of these specialized forms of inheritance.

• Specialization

• Specification

• Construction

• Generalization or Extension

• Limitation

• Variance

Specialization Inheritance: By far the most common form of inheritance is for
specialization . A good example is the Java hierarchy of Graphical components in the
AWT:

• Component

• Label

• Button

• TextComponent

• TextArea

• TextField

• CheckBox

• Scroll bar
Each child class overrides a method inherited from the parent in order to specialize the
class in some way.
Specification Inheritance:

• If the parent class is abstract, we often say that it is providing a specification for the child

class, and therefore it is specification inheritance (a variety of specialization inheritance).
Example: Java Event Listeners, ActionListener, MouseListener, and so on

specify behavior, but must be subclassed.

Inheritance for Construction:

• If the parent class is used as a source for behavior, but the child class has no is-a

relationship to the parent, then we say the child class is using inheritance for construction.
An example might be subclassing the idea of a Set from an existing List class.

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 50

• Generally not a good idea, since it can break the principle of substituability, but

nevertheless sometimes found in practice. (More often in dynamically typed languages,
such as Smalltalk).

Inheritance for Generalization or Extension:

• If a child class generalizes or extends the parent class by providing more functionality,

and overrides any method, we call it inheritance for generalization.
• The child class doesn't change anything inherited from the parent, it simply adds new

features is called extension.
An example is Java Properties inheriting form Hashtable.

Inheritance for Limitation:

• If a child class overrides a method inherited from the parent in a way that makes it

unusable (for example, issues an error message), then we call it inheritance for limitation.
For example, you have an existing List data type that allows items to be inserted at

either end, and you override methods allowing insertion at one end in order to create a

Stack.

• Generally not a good idea, since it breaks the idea of substitution. But again, it is

sometimes found in practice.

Inheritance for Variance:

• Two or more classes that seem to be related, but its not clear who should be the parent

and who should be the child.

Example: Mouse and TouchPad and JoyStick
• Better solution, abstract out common parts to new parent class, and use subclassing for

specialization.

Summary of Forms of Inheritance:

Specialization: The child class is a special case of the parent class; in other words, the

child class is a subtype of the parent class.

Specification: The parent class defines behavior that is implemented in the child class

but not in the parent class.

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 51

Construction: The child class makes use of the behavior provided by the parent class,
but is not a subtype of the parent class.

Generalization: The child class modifies or overrides some of the methods of the parent
class.

Extension: The child class adds new functionality to the parent class, but does not
change any inherited behavior.

Limitation: The child class restricts the use of some of the behavior inherited from the

parent class.

Variance: The child class and parent class are variants of each other, and the class-
subclass relationship is arbitrary.

Combination: The child class inherits features from more than one parent class. This is

multiple inheritance and will be the subject of a later chapter.

BENEFITS OF INHERITANCE:

• Software Reuse

• Code Sharing

• Improved Reliability

• Consistency of Interface

• Rapid Prototyping

• Polymorphism

• Information Hiding

COSTS OF INHERITANCE:

• Execution speed

• Program size

• Message Passing Overhead

• Program Complexity
This does not mean you should not use inheritance, but rather than you must understand
the benefits, and weigh the benefits against the costs.

TYPES OF INHERITANCE:

• Single Level Inheritance:
When one base class is being inherited by one sub class then that kind of

inheritance is known as single level inheritance.

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 52

• Multi Level Inheritance:

When a sub class is in turn being inherited then that kind of inheritance is known as
multi level inheritance.

• Hierarchical Inheritance:
When a base class is being inherited by one or more sub class then that kind of

inheritance is known as hierarchical inheritance.

A sub class uses the keyword ―extends‖ to inherit a base class.

Example for Single Inheritance:
class x
{

int a;

void display()
{

a=0;

System.out.println(a);

}

}

class y extends x

{

int b;

void show()

{

B=1;

System.out.println(b);

}

}

class show_main

{

Public static void main(String args[])

{

y y1=new y();

y1.display();

y1.show();

}

}

Output:
0

1

Since the class y is inheriting class x, it is able to access the members of class x.

Hence the method display() can be invoked by the instance of the class y.

Example for multilevel inheritance:
class x
{

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 53

int a;

void display()

{

a=0;

System.out.println(a);

}

}

class y extends x

{

int b;

void show()

{

B=1;
System.out.println(b);

}

}

class z extends y

{

int c;

show1()

{

c=2;

System.out.println(c);

}

}

class show_main

{

Public static void main(String args[])

{

z z1=new z();

z1.display();

z1.show();

}

}

Output
0
1

2
Since class z is inheriting class y which is in turn a sub class of the class x, indirectly z
can access the members of class x.
Hence the instance of class z can access the display () method in class x, the show ()
method in class y.
Problems:

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 54

In java multiple level inheritance is not possible easily. We have to make use of a concept
called interfaces to achieve it.

Access Specifers:

The different access specifiers used are

• Public

• Private

• Protected

• Default

• Privateprotected

1. Private members can be accessed only within the class in which they are declared.
2. Protected members can be accessed inside the class in which they are declared and also
in the sub classes in the same package and sub classes in the other packages.
3. Default members are accessed by the methods in their own class and in the sub classes
of the same package.
4. Public members can be accessed anywhere.

Super Keyword:
Whenever a sub class needs to refer to its immediate super class, we can use the super
keyword.
Super has two general forms

• The first calls the super class constructor.
• The second is used to access a member of the super class that has been hidden by a

member of a sub class
Syntax:
A sub class can call a constructor defined by its super class by use of the following form
of super.
super(arg-list);

here arg-list specifies any arguments needed by the constructor in the super class .
The second form of super acts like a ―this‖ keyword. The difference between ―this‖

and ―super‖ is that ―this‖ is used to refer the current object where as the super is used
to refer to the super class.
The usage has the following general
form: super.member;

Example:
Class x
{

int
a; x()
{

a=0;

}

void display()

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 55

{

System.out.println(a);

}

}

class y extends x

{

int b;

y()

{

super();

b=1;

}
Void display()

{

Super.display();

System.out.println(b);

}

}

class super_main

{

Public static void main(String args[])

{

y y1=new y();

y.display();

}

}

Using final with inheritance:
The keyword final has three uses.

• First it can be used to create the equivalent of a named constant.

• To prevent overriding.

• To prevent inheritance.
Using final to prevent overriding:
To disallow a method from being overridden, specify final as a modifier at the start of the
declaration.
Methods declared as final cannot be overridden.
Syntax:
final <return type> <method name> (argument list);

Using final with inheritance:
Some times we may want to prevent a class from being inherited.
In order to do this we must precede the class declaration with final.
Declaring a class as final implicitly declares all its methods as final.

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 56

Example:

final class A

{

………//members

}

Abstract Classes:
Abstract methods:

We can require that some methods be overridden by sub classes by specifying
the abstract type modifier.
These methods are sometimes referred to as sub classer responsibility as they have no

implementation specified in the super class.
Thus a sub class must override them.

To declare an abstract method we have:

abstract type name (parameter list);

Any class that contains one or more abstract methods must also be declared abstract..

Such types of classes are known as abstract classes.

Abstract classes can contain both abstract and non-abstract methods.

Let us consider the following example:

abstract class A

{

abstract void callme();

void call()

{

System.out.println(―HELLO‖);

}

}

class B extends A

{

Void callme()

{

System.out.println(―GOOD MORNING‖);

}

}

class abstractdemo

{
Public static void main(String args[]){

B b=new B();

b.callme();

b.call();

}

}

Output:

GOOD MORINING

HELLO

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 57

UNIT- II

Packages and Interfaces

Packages and interfaces are two of the basic components of a Java program. In general, a
Java source file can contain any (or all) of the following four internal parts:

• A single package statement (optional)

• Any number of import statements (optional)

• A single public class declaration (required)

• Any number of classes private to the package (optional)

Java provides a mechanism for partitioning the class name space into more
manageable chunks. This mechanism is the package. The package is both a naming and a

visibility control mechanism. You can define classes inside a package that are not
accessible by code outside that package. You can also define class members that are only

exposed to other members of the same package.

Defining a Package:

• Creating a package is quite easy: simply include a package command as the first

statement in a Java source file. Any classes declared within that file will belong to the

specified package. The package statement defines a name space in which classes are
stored.

• If you omit the package statement, the class names are put into the default package,
which has no name. While the default package is fine for short, sample programs, it is

inadequate for real applications. Most of the time, you will define a package for your
code.

Creating a Package:
• The general form of the package statement:

package pkg; Here, pkg is the name of the

package.

• For example, the following statement creates a package called

MyPackage. package MyPackage;
Java uses file system directories to store packages. For example, the .class files

for any classes you declare to be part of MyPackage must be stored in a directory called
MyPackage. Remember that case is significant, and the directory name must match the

package name exactly.

More than one file can include the same package statement. The package

statement

simply specifies to which package the classes defined in a file belong. It does not exclude
other classes in other files from being part of that same package. You can create a

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 58

hierarchy of packages. To do so, simply separate each package name from the one above

it by use of a period.
• The general form of a multileveled package statement is shown

here: package pkg1[.pkg2[.pkg3]];

• A package hierarchy must be reflected in the file system of your Java development.

For example, a package declared as package java.awt.image; needs to be stored in
java/awt/image, java\awt\image,
Or

java:awt:imag

e on your
UNIX, Windows, or Macintosh file system, respectively. Be sure to choose your
package names carefully.

• You cannot rename a package without renaming the directory in which the classes are
stored.

Finding Packages and CLASSPATH:

Java run-time system know where to look for packages that you create? The

answer has two parts.
• First, by default, the Java run-time system uses the current working directory as its

starting point. Thus, if your package is in the current directory, or a subdirectory of the

current directory, it will be found.
• Second, you can specify a directory path or paths by setting the CLASSPATH

environmental variable.
For example, consider the following package specification.

package MyPack;

In order for a program to find MyPack, one of two things must be true. Either the

program is executed from a directory immediately above MyPack, or CLASSPATH
must be set to include the path to MyPack.

The first alternative is the easiest (and doesn‗t require a change to
CLASSPATH), but the second alternative lets your program find MyPack no matter
what directory the program is in.

Create the package directories below your current development directory, put the
.class files into the appropriate directories and then execute the programs from the

development directory.

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 59

Example:
// A simple package
package MyPack;
class Balance
{

String name;

double bal;

Balance(String n, double b)

{

name = n;

bal = b;

}

void show()

{

if(bal<0)

System.out.print("--> ");

System.out.println(name + ": $" + bal);

}
}

class AccountBalance

{

public static void main(String args[])

{

Balance current[] = new Balance[3];

current[0] = new Balance("K. J. Fielding", 123.23);

current[1] = new Balance("Will Tell", 157.02);

current[2] = new Balance("Tom Jackson", -12.33);

for(int i=0; i<3; i++)

current[i].show();

}

}

Save this file as AccountBalance.java, and put it in a directory called MyPack.
Next, compile the file. Make sure that the resulting .class file is also in the MyPack

directory. Executing the AccountBalance class, using the following command line:
java MyPack.AccountBalance

Remember, we should be in the directory above MyPack when you execute this

command, or to have your CLASSPATH environmental variable set appropriately.
AccountBalance is now part of the package MyPack. This means that it cannot be

executed by itself. That is, you cannot use this command line:
java AccountBalance
AccountBalance must be qualified with its package name.

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 60

Access Protection:
Classes and packages are both means of encapsulating and containing the name

space and scope of variables and methods. Packages act as containers for classes and

other subordinate packages. Classes act as containers for data and code. The class is

Java‗s smallest unit of abstraction. Because of the interplay between classes and
packages, Java addresses four categories of visibility for class members:

• Subclasses in the same package

• Non-subclasses in the same package

• Subclasses in different packages

• Classes that are neither in the same package nor subclasses

Table: Class member access

 Private No Protected Public

 modifier

Same class Yes Yes Yes Yes

Same No Yes Yes Yes

package

subclass

Same No Yes Yes Yes

package

non-

subclass

Different No No Yes Yes

Package

subclass

Different No No No Yes
package

non-

subclass

The three access specifiers, private, public, and protected, provide a variety of

ways to produce the many levels of access required by these categories. A class has only
two possible access levels: default and public. When a class is declared as public, it is

accessible by any other code. If a class has default access, then it can only be accessed by

other code within its same package.

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 61

Example:
• This is file

Protection.java: package

p1;

public class Protection

{

int n = 1;
private int n_pri = 2;
protected int n_pro =

3; public int n_pub =
4; public Protection()
{

System.out.println("base constructor");

System.out.println("n = " + n);

System.out.println("n_pri = " + n_pri);

System.out.println("n_pro = " + n_pro);

System.out.println("n_pub = " + n_pub);

}

}

• This is file

Derived.java: package

p1;

class Derived extends Protection

{

Derived()

{
System.out.println("derived constructor");
System.out.println("n = " + n);
// class only
// System.out.println("n_pri = " + n_pri);
System.out.println("n_pro = " + n_pro);
System.out.println("n_pub = " + n_pub);
}

}

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 62

• This is file

SamePackage.java: package

p1;

class SamePackage

{

SamePackage()

{
Protection p = new Protection();
System.out.println("same package constructor");
System.out.println("n = " + p.n);
// class only
// System.out.println("n_pri = " + p.n_pri);

System.out.println("n_pro = " + p.n_pro);
System.out.println("n_pub = " + p.n_pub);
}

}

• This is file Protection2.java:

package p2;

class Protection2 extends p1.Protection

{

Protection2()

{

System.out.println("derived other package constructor");

// class or package only

// System.out.println("n = " + n);

// class only
// System.out.println("n_pri = " + n_pri);
System.out.println("n_pro = " + n_pro);
System.out.println("n_pub = " + n_pub);
}

}
• This is file OtherPackage.java:

package p2;

class OtherPackage

{

OtherPackage()

{
p1.Protection p = new p1.Protection();
System.out.println("other package constructor");
// class or package only

// System.out.println("n = " + p.n);

// class only

// System.out.println("n_pri = " + p.n_pri);

// class, subclass or package only

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 63

// System.out.println("n_pro = " +

p.n_pro); System.out.println("n_pub = " +

p.n_pub);

}

}

• If you wish to try these two packages, here are two test files you can use. The
one for package p1 is shown here:

// Demo package
p1. package p1;
// Instantiate the various classes in
p1. public class Demo
{

public static void main(String args[])

{
Protection ob1 = new Protection();

Derived ob2 = new Derived();

SamePackage ob3 = new

SamePackage();

}

}

• The test file for p2 is shown next:

// Demo package p2.

package p2;
// Instantiate the various classes in
p2. public class Demo
{

public static void main(String args[])

{
Protection2 ob1 = new Protection2();
OtherPackage ob2 = new OtherPackage();
}

}

Importing Packages:
Java includes the import statement to bring certain classes, or entire packages,

into visibility. Once imported, a class can be referred to directly, using only its name. The
import statement is convenient.
In a Java source file, import statements occur immediately following the package
statement (if it exists) and before any class definitions. This is the general form of the
import statement:
import pkg1[.pkg2].(classname|*);

Here, pkg1 is the name of a top-level package, and pkg2 is the name of a

subordinate package inside the outer package separated by a dot (.). There is no practical

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 64

limit on the depth of a package hierarchy, except that imposed by the file system. Finally,

you specify either an explicit classname or a star (*), which indicates that the Java

compiler should import the entire package.

This code fragment shows both forms in use:
import java.util.Date;

import java.io.*;

The star form may increase compilation time—especially if you import several

large packages. For this reason it is a good idea to explicitly name the classes that you

want to use rather than importing whole packages. However, the star form has absolutely

no effect on the run-time performance or size of your classes.

All of the standard Java classes included with Java are stored in a package called

java. The basic language functions are stored in a package inside of the java package

called java.lang. Normally, you have to import every package or class that you want to

use.
If a class with the same name exists in two different packages that you import using the

star form, the compiler will remain silent, unless you try to use one of the classes. In that
case, you will get a compile-time error and have to explicitly name the class specifying

its package.

when a package is imported, only those items within the package declared as
public will be available to non-subclasses in the importing code.

For example, if you want the Balance class of the package MyPack shown earlier to be

available as a stand-alone class for general use outside of MyPack, then you will need to

declare it as public and put it into its own file, as shown here: package MyPack;

/* Now, the Balance class, its constructor, and its show() method are public. This

means that they can be used by non-subclass code outside their package.*/
public class Balance

{

String name;

double bal;

public Balance(String n, double b)

{
name = n;

bal = b;

}

public void show()

{

if(bal<0)

System.out.print("--> ");

System.out.println(name + ": $" + bal);

}

}

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 65

As you can see, the Balance class is now public. Also, its constructor and its

show() method are public, too. This means that they can be accessed by any type of
code outside the MyPack package. For example, here TestBalance imports MyPack and

is then able to make use of the Balance class:

import MyPack.*;

class TestBalance

{

public static void main(String args[])

{
/* Because Balance is public, you may use Balance class and call its

constructor. */
Balance test = new Balance("J. J. Jaspers", 99.88);

test.show(); // you may also call show() }

}

Interfaces
Using the keyword interface, you can fully abstract a class‗ interface from its

implementation.That is, using interface, you can specify what a class must do, but not
how it does it. Interfaces are syntactically similar to classes, but they lack instance varia

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 66

bles, and their methods are declared without any body. In practice, this means that you
can define interfaces which don‗t make assumptions about how they are implemented.

Once it is defined, any number of classes can implement an interface. Also, one class can
implement any number of interfaces.

To implement an interface, a class must create the complete set of methods defined
by the interface. Each class can determine the details of its own implementation. By

providing the interface keyword, Java allows you to fully utilize the ―one interface,

multiple methods‖ aspect of polymorphism.

Interfaces are designed to support dynamic method resolution at run time.
Normally, in order for a method to be called from one class to another, both classes need

to be present at compile time so the Java compiler can check to ensure that the method

signatures are compatible. This requirement by itself makes for a static and no extensible

classing environment. Inevitably in a system like this, functionality gets pushed up higher

and higher in the class hierarchy so that the mechanisms will be available to more and

more subclasses. Interfaces are designed to avoid this problem. They disconnect the

definition of a method or set of methods from the inheritance hierarchy. Since interfaces

are in a different hierarchy from classes, it is possible for classes that are unrelated in

terms of the class hierarchy to implement the same interface. This is where the real power

of interfaces is realized.

Interfaces add most of the functionality that is required for many applications
which would normally resort to using multiple inheritance in a language such as C++.

Defining an Interface:
• An interface is defined much like a class.
• This is the general form of an

interface: access interface name
{

return-type method-name1(parameter-

list); return-type method-

name2(parameter-list); type final-

varname1 = value;
type final-varname2 = value; return-type
method-nameN(parameter-list); type final-
varnameN = value;

}
Here, access is either public or not used. When no access specifier is included,

then default access results, and the interface is only available to other members of the

package in which it is declared. When it is declared as public, the interface can be used

by any other code. name is the name of the interface, and can be any valid identifier.

Notice that the methods which are declared have no bodies. They end with a semicolon

after the parameter list. They are, essentially, abstract methods; there can be no default

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 67

implementation of any method specified within an interface. Each class that includes an
interface must implement all of the methods.

Variables can be declared inside of interface declarations. They are implicitly
final and static, meaning they cannot be changed by the implementing class. They must

also be initialized with a constant value. All methods and variables are implicitly public if

the interface, itself, is declared as public.

An example of an interface definition. It declares a simple interface which
contains one method called callback() that takes a single integer parameter.

interface Callback

{

void callback(int param);

}

Implementing Interfaces:
Once an interface has been defined, one or more classes can implement that

interface.
To implement an interface, include the implements clause in a class definition,

and then create the methods defined by the interface.
• The general form of a class that implements the interface:

•

access class classname [extends superclass][implements interface
[,interface...]] {
// class-body

}

Here, access is either public or not used. If a class implements more than one

interface,the interfaces are separated with a comma. If a class implements two interfaces

that declare the same method, then the same method will be used by clients of either

interface. The methods that implement an interface must be declared public. Also, the

type signature of the implementing method must match exactly the type signature

specified in the interface definition.

Example: class that implements the Callback interface shown earlier.

class Client implements Callback

{

public void callback(int p)

{

System.out.println("callback called with " + p);

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 68

}

}

Notice that callback() is declared using the public access specifier.When you implement
an interface method, it must be declared as public.
For example, the following version of Client implements callback() and adds the method
nonIfaceMeth():

class Client implements Callback

{

public void callback(int p)

{

System.out.println("callback called with " + p);
}

void nonIfaceMeth()

{
System.out.println("Classes that implement interfaces"+"may also define other

members, too.");
}

}

Accessing Implementations Through Interface References:
We can declare variables as object references that use an interface rather than a

class type. Any instance of any class that implements the declared interface can be

referred to by such a variable. When you call a method through one of these references,

the correct version will be called based on the actual instance of the interface being

referred to. This is one of the key features of interfaces. The method to be executed is

looked up dynamically at run time, allowing classes to be created later than the code

which calls methods on them. The calling code can dispatch through an interface without

having to know anything about the ―callee.‖ This process is similar to using a superclass

reference to access a subclass object.

Because dynamic lookup of a method at run time incurs a significant overhead

when compared with the normal method invocation in Java, you should be careful not to
use interfaces casually in performance-critical code.

The following example calls the callback() method via an interface reference
variable:

class TestIface

{

public static void main(String args[])

{

Callback c = new Client();

c.callback(42);

}

}

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 69

Output:
callback called with 42.

Notice that variable c is declared to be of the interface type Callback, yet it was

assigned an instance of Client. Although c can be used to access the callback() method, it

cannot access any other members of the Client class. An interface reference variable only

has knowledge of the methods declared by its interface declaration.
Thus, c could not be used to access nonIfaceMeth() since it is defined by Client

but not Callback.
The preceding example shows, mechanically, how an interface reference variable

can access an implementation object, it does not demonstrate the polymorphic power of
such a reference. To sample this usage, first create the second implementation of

Callback, shown here:
// Another implementation of Callback.

class AnotherClient implements Callback

{

public void callback(int p)

{
System.out.println("Another version of
callback"); System.out.println("p squared is " +
(p*p)); }

}

class TestIface2

{

public static void main(String args[])

{

Callback c = new Client();

AnotherClient ob = new AnotherClient();

c.callback(42);

c = ob; // c now refers to AnotherClient object

c.callback(42);

}

}
Output:
callback called with 42
Another version of callback

p squared is 1764

As you can see, the version of callback() that is called is determined by the type of
object that c refers to at run time.

If a class includes an interface but does not fully implement the methods defined by
that interface, then that class must be declared as abstract.

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 70

For example:

abstract class Incomplete implements Callback

{

int a, b;

void show()

{

System.out.println(a + " " + b);

}

}
Here, the class Incomplete does not implement callback() and must be declared

as abstract. Any class that inherits Incomplete must implement callback() or be declared
abstract itself.

Applying Interfaces:
We define a stack interface, leaving it to each implementation to define the

specifics. Let‗s look at two examples.
First, here is the interface that defines an integer stack. Put this in a file called

IntStack.java. This interface will be used by both stack implementations. Example:

// Define an integer stack
interface. interface IntStack
{

void push(int item); // store an item
int pop(); // retrieve an item

}
The following program creates a class called FixedStack that implements a fixed-

length version of an integer stack:
Example:

// An implementation of IntStack that uses fixed storage.

class FixedStack implements IntStack

{

private int stck[];

private int tos;
FixedStack(int size)

stck = new int[size];

tos = -1;

}
// Push an item onto the

stack public void push(int

item)

{

if(tos==stck.length-1) // use length member

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 71

System.out.println("Stack is full.");

else

stck[++tos] = item;

}

// Pop an item from the stack
public int pop()
{

if(tos < 0)

{
System.out.println("Stack underflow.");
return 0;
}

else

return stck[tos--];

}

}

class IFTest

{

public static void main(String args[])

{

FixedStack mystack1 = new FixedStack(5);

// push some numbers onto the stack
for(int i=0; i<5; i++) mystack1.push(i);
for(int i=0; i<8; i++) mystack2.push(i);
// pop those numbers off the stack

System.out.println("Stack in

mystack1:"); for(int i=0; i<5; i++)

System.out.println(mystack1.pop());

System.out.println("Stack in

mystack2:"); for(int i=0; i<8; i++)

System.out.println(mystack2.pop());
}

}

Following is another implementation of IntStack that creates a dynamic stack by

use of the same interface definition. In this implementation, each stack is constructed

with an initial length. If this initial length is exceeded, then the stack is increased in size.

Each time more room is needed, the size of the stack is doubled. Example:

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 72

// Implement a "growable" stack.
class DynStack implements IntStack
{

private int stck[];

private int tos;
// allocate and initialize stack
DynStack(int size)
{
stck = new int[size];
tos = -1;
}
// Push an item onto the

stack public void push(int

item)

{
// if stack is full, allocate a larger
stack if(tos==stck.length-1)
{
int temp[] = new int[stck.length * 2]; // double size
for(int i=0; i<stck.length; i++)
temp[i] = stck[i];

stck = temp;

stck[++tos] =

item;

}

else

stck[++tos] = item;

}

// Pop an item from the stack

public int pop()

{

if(tos < 0) {

System.out.println("Stack underflow.");

return 0;

}

else

return stck[tos--];

}

}

class IFTest2

{
public static void main(String args[])

{

DynStack mystack1 = new DynStack(5);

DynStack mystack2 = new DynStack(8);
// these loops cause each stack to grow

for(int i=0; i<12; i++) mystack1.push(i);

for(int i=0; i<20; i++) mystack2.push(i);

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 73

System.out.println("Stack in

mystack1:");

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 74

for(int i=0; i<12; i++)

System.out.println(mystack1.pop());

System.out.println("Stack in mystack2:");

for(int i=0; i<20; i++)

System.out.println(mystack2.pop());

}

}
The following class uses both the FixedStack and DynStack implementations.It does so
through an interface reference. This means that calls to push() and pop()are resolved at
run time rather than at compile time.
/* Create an interface variable and access stacks through it.

*/

class IFTest3
{

public static void main(String args[])

{
IntStack mystack; // create an interface reference
variable DynStack ds = new DynStack(5); FixedStack fs
= new FixedStack(8);
mystack = ds; // load dynamic stack
// push some numbers onto the stack
for(int i=0; i<12; i++)

mystack.push(i);
mystack = fs; // load fixed
stack for(int i=0; i<8; i++)
mystack.push(i);
mystack = ds;
System.out.println("Values in dynamic stack:");
for(int i=0; i<12; i++)
System.out.println(mystack.pop());
mystack = fs;
System.out.println("Values in fixed
stack:"); for(int i=0; i<8; i++)
System.out.println(mystack.pop());
}

}
In this program, mystack is a reference to the IntStack interface. Thus, when it

refers to ds, it uses the versions of push() and pop() defined by the DynStack
implementation. When it refers to fs, it uses the versions of push() and pop() defined by

FixedStack.
These determinations are made at run time. Accessing multiple implementations of an
interface through an interface reference variable is the most powerful way that Java

achieves run-time polymorphism.

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 75

Variables in Interfaces:

Interfaces can be used to import shared constants into

multiple classes by simply declaring an interface that contains variables which are

initialized to the desired values. When we include that interface in a class (that is, when

you ―implement‖ the interface), all of those variable names will be in scope as

constants. This is similar to using a header file in C/C++ to create a large number of

#defined constants or const declarations. If an interface contains no methods, then any

class that includes such an interface doesn‗t actually implement anything. It is as if that

class were importing the constant variables into the class name space as final variables

Example:

import java.util.Random;

interface SharedConstants

{
int NO = 0;

int YES = 1;

int MAYBE = 2;

int LATER = 3;

int SOON = 4;

int NEVER = 5;

}

class Question implements SharedConstants

{

Random rand = new Random();

int ask()

{

int prob = (int) (100 * rand.nextDouble());

if (prob < 30)

return NO; // 30%

else if (prob < 60)

return YES; // 30%

else if (prob < 75)

return LATER; // 15%

else if (prob < 98)

return SOON; // 13%

else

return NEVER; // 2%

}
}

class AskMe implements SharedConstants

{

static void answer(int result)

{

switch(result)

{

case NO:

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 76

System.out.println("No");

break;

case YES:

System.out.println("Yes");

break;

case MAYBE:

System.out.println("Maybe");

break;

case LATER:

System.out.println("Later");

break;

case SOON:

System.out.println("Soon");
break;

case NEVER:

System.out.println("Never");

break;

}

}

public static void main(String args[])

{

Question q = new Question();

answer(q.ask());

answer(q.ask());

answer(q.ask());

answer(q.ask());

}

}
Output:
Later
Soon

No

Yes

This program makes use of one of Java‗s standard classes: Random. This class

provides pseudorandom numbers. It contains several methods which allow you to obtain
random numbers in the form required by your program. In this example, the method

nextDouble() is used. It returns random numbers in the range 0.0 to 1.0.
In this sample program, the two classes, Question and AskMe, both implement the

SharedConstants interface where NO, YES, MAYBE, SOON, LATER, and NEVER are
defined. Inside each class, the code refers to these constants as if each class had defined

or inherited them directly.

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 77

Interfaces Can Be Extended:

One interface can inherit another by use of the keyword extends. The syntax is the

same as for inheriting classes. When a class implements an interface that inherits another

interface, it must provide implementations for all methods defined within the interface

inheritance chain.

Example:
// One interface can extend
another. interface A
{
void meth1();
void meth2();
}
// B now includes meth1() and meth2() -- it adds
meth3(). interface B extends A
{

void meth3();

}

// this class must implement all of A and B

class MyClass implements B

{

public void meth1()

{

System.out.println("Implement meth1().");

}

public void meth2()

{

System.out.println("Implement meth2().");

}

public void meth3()

{

System.out.println("Implement meth3().");

}

}

class IFExtend

{

public static void main(String arg[])

{
MyClass ob = new MyClass();

ob.meth1();

ob.meth2();

ob.meth3();

}

}
Any class that implements an interface must implement all methods defined by that
interface, including any that are inherited from other interfaces.

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 78

EXPLORING JAVA.IO PACKAGE:

java.io, which provides support for I/O operations Data is retrieved from an input

source. The results of a program are sent to an output destination. In Java, these sources

or destinations are defined very broadly. For example, a network connection, memory

buffer, or disk file can be manipulated by the Java I/O classes. Although physically

different, these devices are all handled by the same abstraction: the stream. A stream is a

logical entity that either produces or consumes information. A stream is linked to a

physical device by the Java I/O system. All streams behave in the same manner, even if

the actual physical devices they are linked to differ.

Some of the I/O classes defined by java.io are:

FileWriter, BufferedOutputStream, FilterInputStream, BufferedReader,
FilterOutputStream, BufferedWriter, FilterReader, DataInputStream,
RandomAccessFile DataOutputStream.

File:
most of the classes defined by java.io operate on streams, the File class does not. It deals

directly with files and the file system. That is, the File class does not specify how

information is retrieved from or stored in files; it describes the properties of a file itself.

A File object is used to obtain or manipulate the information associated with a disk file,

such as the permissions, time, date, and directory path, and to navigate subdirectory

hierarchies.
Files are a primary source and destination for data within many programs.Files are still a

central resource for storing persistent and shared information. A directory in Java is
treated simply as a File with one additional property—a list of filenames that can be

examined by the list() method.
The following constructors can be used to create File objects:

File(String directoryPath)

File(String directoryPath, String filename)

File(File dirObj, String filename)
File(URI uriObj)
Here, directoryPath is the path name of the file, filename is the name of the file, dirObj is
a File object that specifies a directory, and uriObj is a URI object that describes a file.

The following example demonstrates several of the File methods:
// Demonstrate File.
import java.io.File;
class FileDemo

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 79

{

static void p(String s)

{

System.out.println(s);

}

public static void main(String args[])

{

File f1 = new File("/java/COPYRIGHT");

p("File Name: " + f1.getName());

p("Path: " + f1.getPath());

p("Abs Path: " + f1.getAbsolutePath());

p("Parent: " + f1.getParent());

p(f1.exists() ? "exists" : "does not exist");
p(f1.canWrite() ? "is writeable" : "is not writeable");

p(f1.canRead() ? "is readable" : "is not readable");

p("is " + (f1.isDirectory() ? "" : "not" + " a directory"));

p(f1.isFile() ? "is normal file" : "might be a named pipe");

p(f1.isAbsolute() ? "is absolute" : "is not absolute");

p("File last modified: " + f1.lastModified());

p("File size: " + f1.length() + " Bytes");

}

}

When you run this program, you will see something similar to the following:

File Name: COPYRIGHT

Path: /java/COPYRIGHT

Abs Path: /java/COPYRIGHT

Parent: /java

exists

is writeable

is readable

is not a directory

is normal file

is absolute

File last modified: 812465204000

File size: 695 Bytes

The Stream Classes:

Java‗s stream-based I/O is built upon four abstract classes: InputStream,

OutputStream, Reader, and Writer. They are used to create several concrete stream

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 80

subclasses. Although your programs perform their I/O operations through concrete
subclasses, the top-level classes define the basic functionality common to all stream
classes.
InputStream and OutputStream are designed for byte streams.

Reader and Writer are designed for character streams.
The byte stream classes and the character stream classes form separate hierarchies. In
general, you should use the character stream classes when working with characters or
strings, and use the byte stream classes when working with bytes or other binary objects.

Byte Stream Classes:

• InputStream
InputStream is an abstract class that defines Java‗s model of streaming byte input. All of
the methods in this class will throw an IOException on error conditions.
Some of the methods in this class are:

• int available(): Returns the number of bytes of input currently available for reading.
• void close(): Closes the input source. Further read attempts will generate an

IOException.
• int read(): Returns an integer representation of the next available byte of input. –1 is

returned when the end of the file is encountered.
• int read(byte buffer[]): Attempts to read up to buffer.length bytes into buffer and returns

the actual number of bytes that were successfully read. –1 is returned when the end of the
file is encountered.

• OutputStream
OutputStream is an abstract class that defines streaming byte output. All of the methods

in this class return a void value and throw an IOException in the case of errors.
Some of the methods in this class are:

• void close(): Closes the output stream. Further write attempts will generate an
IOException.

• void write(int b): Writes a single byte to an output stream. Note that the parameter is an
int, which allows you to call write() with expressions without having to cast them back

to byte.
• void write(byte buffer[]): Writes a complete array of bytes to an output stream.

• FileInputStream
The FileInputStream class creates an InputStream that you can use to read bytes
from a file. Its two most common constructors are shown here:
FileInputStream(String filepath)

FileInputStream(File fileObj)
Either can throw a FileNotFoundException. Here, filepath is the full path name of a
file, and fileObj is a File object that describes the file.

• FileOutputStream
FileOutputStream creates an OutputStream that you can use to write bytes to a file.
Its most commonly used constructors are shown here:

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 81

FileOutputStream(String filePath)

FileOutputStream(File fileObj)

FileOutputStream(String filePath, boolean append)

FileOutputStream(File fileObj, boolean append)
They can throw a FileNotFoundException or a SecurityException. Here, filePath is the full path
name of a file, and fileObj is a File object that describes the file. If append is true, the file is
opened in append mode

The Character Streams:
While the byte stream classes provide sufficient functionality to handle any type

of I/O
operation, they cannot work directly with Unicode characters. Since one of the main

purposes of Java is to support the ―write once, run anywhere‖ philosophy, it was necessary
to include direct I/O support for characters. In this section, several of the character I/O

classes are discussed. As explained earlier, at the top of the character stream hierarchies are
the Reader and Writer abstract classes.

• Reader
Reader is an abstract class that defines Java‗s model of streaming character input. All of the

methods in this class will throw an IOException on error conditions. Table 17-3 provides a
synopsis of the methods in Reader.
Writer
Writer is an abstract class that defines streaming character output. All of the methods in this
class return a void value and throw an IOException in the case of errors. Table 17-4 shows a
synopsis of the methods in Writer.

• FileReader
The FileReader class creates a Reader that you can use to read the contents of a file. Its two
most commonly used constructors are shown here:
FileReader(String filePath)

FileReader(File fileObj)

• FileWriter
FileWriter creates a Writer that you can use to write to a file. Its most commonly used

constructors are shown here:
FileWriter(String filePath) FileWriter(String

filePath, boolean append) FileWriter(File fileObj)
FileWriter(File fileObj, boolean append)
They can throw an IOException. Here, filePath is the full path name of a file, and fileObj
is a File object that describes the file. If append is true, then output is appended to the end of
the file.

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 82

UNIT – III

Exception handling – Multithreading

Exceptional Handling

An exception is a problem that arises during the execution of a program. An exception can

occur for many different reasons, including the following:

 A user has entered invalid data.

 A file that needs to be opened cannot be found.

 A network connection has been lost in the middle of communications, or the JVM has

run out of memory

―Exceptional Handling is a task to maintain normal flow of the program. For this we should

try to catch the exception object thrown by the error condition and then display appropriate

message for taking corrective actions‖

Types of Exceptions

1. Checked Exception: A checked exception is an exception that is typically a user

error or a problem that cannot be foreseen by the programmer. Checked exception can

also be defined as ―The classes that extend the Throwable class except

RuntimeException and Error are known as Checked Exceptions‖. For example, if a

file is to be opened, but the file cannot be found, an exception occurs. These exceptions

are checked at compile-time and cannot simply be ignored at the time of compilation.

Example of Checked Exception are IOException, SQLException etc.

2. Unchecked Exception: Also known as Runtime Exceptions and they are ignored at

the time of compilation but checked during execution of the program. Unchecked

Exceptions can also be defined as ―The Classes that extend the RuntimeException class

are known as Unchecked Exceptions‖. Example are ArithmeticException,

NullPointerException etc.

3. Error: These are not exceptions at all, but problems that arise beyond the control of

the user or the programmer. Errors are typically ignored in your code because you can

rarely do anything about an error. For example, if a stack overflow occurs, an error will

arise. They are also ignored at the time of compilation.

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 83

Hierarchy of Exception

All exception classes are subtypes of the java.lang.Exception class. The exception class is a

subclass of the Throwable class. Other than the exception class there is another subclass called

Error which is derived from the Throwable class.

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 84

Table of JAVA – Built in Exceptions

Following is the list of Java Unchecked RuntimeException

Exception Description

ArithmeticException Arithmetic error, such as divide-by-zero.

ArrayIndexOutOfBoundsExcepti

on

Array index is out-of-bounds.

ArrayStoreException Assignment to an array element of an incompatible

type.

ClassCastException Invalid cast.

IllegalArgumentException Illegal argument used to invoke a method.

IllegalMonitorStateException Illegal monitor operation, such as waiting on an

unlocked thread.

IllegalStateException Environment or application is in incorrect state.

IllegalThreadStateException Requested operation not compatible with current

thread state.

IndexOutOfBoundsException Some type of index is out-of-bounds.

NegativeArraySizeException Array created with a negative size.

NullPointerException Invalid use of a null reference.

NumberFormatException Invalid conversion of a string to a numeric format.

SecurityException Attempt to violate security.

StringIndexOutOfBounds Attempt to index outside the bounds of a string.

UnsupportedOperationException An unsupported operation was encountered.

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 85

Following is the list of Java Checked Exceptions Defined in java.lang

Exception Description

ClassNotFoundException Class not found.

CloneNotSupportedExcepti
on

Attempt to clone an object that does not implement the

Cloneable interface.

IllegalAccessException Access to a class is denied.

InstantiationException Attempt to create an object of an abstract class or

interface.
InterruptedException One thread has been interrupted by another thread.

NoSuchFieldException A requested field does not exist.

NoSuchMethodException A requested method does not exist.

Handling Exceptions in Java

Following five keywords are used to handle an exception in Java:

1. try

2. catch

3. finally

4. throw

5. throws

try –catch block

A method catches an exception using a combination of the try and catch keywords. A

try/catch block is placed around the code that might generate an exception. Code within a

try/catch block is referred to as protected code, and the syntax for using try/catch looks like

the following:

A catch statement involves declaring the type of exception you are trying to catch. If an

exception occurs in protected code, the catch block (or blocks) that follows the try is checked.

If the type of exception that occurred is listed in a catch block, the exception is passed to the

Write block of code here that is likely to cause an

error condition and throws an exception

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 86

catch block much as an argument is passed into a method parameter.

Example of Program without Exceptional Handling

Output:

Same Program with Exception Handling

This statement can cause error as

divide by Zero is an

ArithmeticException

Output

Now as the statement which can

cause error condition is wrapped

under try block and catch block is also

present to handle the exception

object thrown. In this case even if

there is an error rest of the program

will execute normally

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 87

Multiple Catch Blocks:

A try block can be followed by multiple catch blocks, but when we use multiple catch

statements it is important that exception subclasses must come before any of their

superclasses. The reason is ―a catch statement with superclass will catch exceptions of that

type plus any of its subclass, thus causing a catch statement with subclass exception a non-

reachable code which is error in JAVA‖.

Example:

Output

However if the order of the catch blocks is reversed like shown below, then program will

execute normally

In the example, two catch statement are used but

first one is of type Exception which is a superclass

of ArithmeticException (used in second catch). So

any exception thrown will be caught by first catch

block which makes second block unreachable and

error is shown during compile time

5

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 88

Finally Block

The finally keyword is used to create a block of code that follows a try block. A finally block

of code always executes, whether or not an exception has occurred. Using a finally block

allows you to run any cleanup-type statements that you want to execute, no matter what

happens in the protected code.

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 89

Example of Finally Statement

Output 1

In the first case no command line arguments are passed which will throw

ArrayIndexOutOfBoundsException and in the above code we are handling only

ArithmeticException which will cause the system to terminate and remaining program will not

run. But in this case also the statement written in the finally block will gets executed as shown

below:

In second case ‗0‘ is passed as command line argument to let program throw

ArithmeticException which will eventually be handled by catch block. See the output below

which clearly shows that remaining part of the code will also run along with finally statement.

In third case ‗5‘ is passed as command line argument which is perfectly fine and in this case

no exception will be throws. Now see the output below, in this case also finally statement will

get executed.

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 90

Throw Keyword

The throw keyword is used to explicitly throw an exception. We can throw either checked or

unchecked exception. The throw keyword is normally used to throw custom exception.

Example

In the example shown below a method validage(int i) is used which will check the value of

passed parameter i and if the value is less than 18 than a ArithmeticException is thrown. Now

as you can see when we have called the method no try catch block is used which results in

termination of the program and message is displayed as ―not valid‖ which is passed during

throwing of ArithmeticException object.

Output

However if during call of validage method try-catch block has been used then the program will

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 91

run normally

Output

Throws Keyword

The throws keyword is used to declare the exception, it provide information to the

programmer that there may occur an exception so during call of that method, and programmer

must use exceptional handling mechanism. Throws keyword is also used to propagate checked

exception.

Example

In this example, exception is created by extending Exception class and the custom exception

is declared in the method validage(int i)

Code to create custom exception with

name “ajexception”

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 92

Case 1: During call of validage method exceptional handling is not used and code looks like

this and error is displayed in the compilation of the code.

Output

Case 2: During call of method validage exceptional handling is used with try-catch keyword

like this and the program runs as expected.

Output:

Case 3: During call of method validage exceptional handling is used without try-catch

keyword and throws keyword is used in main method as shown below

There will be no error now during compile time, but program will gets terminated when

exception event takes place.

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 93

Output

Case 4: Try to propagate custom exception not of type RuntimeException without declaring

in method using throws keyword. This will give compile time error

Output:

Case 5: Make custom exception by extending RunTimeException Class and try the same

method as use for Case 4. There will be no error now and the program runs as expected

Output

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 94

Important Points in Exceptional Handling

 A catch clause cannot exist without a try statement.

 It is not compulsory to have finally clauses whenever a try/catch block is present.

 The try block cannot be present without either catch clause or finally clause.

 Any code cannot be present in between the try, catch, finally blocks.

Declaring your Own Exceptions

You can create your own exceptions in Java. Keep the following points in mind when writing

your own exception classes:

 All exceptions must be a child of Throwable.

 If you want to write a checked exception that is automatically enforced by the Handle or

Declare Rule, you need to extend the Exception class.

 If you want to write a runtime exception, you need to extend the RuntimeException class.

Example to create custom exception is shown in the section above.

Multithreading

Multithreading is a conceptual programming concept where a program (process) is divided

into two or more subprograms (process), which can be implemented at the same time in

parallel. A multithreaded program contains two or more parts that can run concurrently. Each

part of such a program is called a thread, and each thread defines a separate path of execution.

A process consists of the memory space allocated by the operating system that can contain

one or more threads. A thread cannot exist on its own; it must be a part of a process.

There are two distinct types of Multitasking i.e. Processor-Based and Thread-Based

multitasking.

Q: What is the difference between thread-based and process-based multitasking?

Ans: As both are types of multitasking there is very basic difference between the two.

Process-Based multitasking is a feature that allows your computer to run two or more

programs concurrently. For example you can listen to music and at the same time chat with

your friends on Facebook using browser. In Thread-based multitasking, thread is the smallest

unit of code, which means a single program can perform two or more tasks simultaneously.

For example a text editor can print and at the same time you can edit text provided that those

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 95

two tasks are perform by separate threads.

Q: Why multitasking thread requires less overhead than multitasking processor?

Ans: A multitasking thread requires less overhead than multitasking processor because of the

following reasons:

 Processes are heavyweight tasks where threads are lightweight

 Processes require their own separate address space where threads share the address

space

 Interprocess communication is expensive and limited where Interthread

communication is inexpensive, and context switching from one thread to the next is

lower in cost.

Benefits of Multithreading

1. Enables programmers to do multiple things at one time

2. Programmers can divide a long program into threads and execute them in parallel

which eventually increases the speed of the program execution

3. Improved performance and concurrency

4. Simultaneous access to multiple applications

Life Cycle of Thread

A thread can be in any of the five following states

1. Newborn State: When a thread object is created a new thread is born and said to be

in Newborn state.

2. Runnable State: If a thread is in this state it means that the thread is ready for

execution and waiting for the availability of the processor. If all threads in queue are of

same priority then they are given time slots for execution in round robin fashion

3. Running State: It means that the processor has given its time to the thread for

execution. A thread keeps running until the following conditions occurs

a. Thread give up its control on its own and it can happen in the following

situations

i. A thread gets suspended using suspend() method which can only be

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 96

revived with resume() method

ii. A thread is made to sleep for a specified period of time using

sleep(time) method, where time in milliseconds

iii. A thread is made to wait for some event to occur using wait () method.

In this case a thread can be scheduled to run again using notify ()

method.

b. A thread is pre-empted by a higher priority thread

4. Blocked State: If a thread is prevented from entering into runnable state and

subsequently running state, then a thread is said to be in Blocked state.

5. Dead State: A runnable thread enters the Dead or terminated state when it completes

its task or otherwise terminates.

Fig: Life Cycle of Thread

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 97

Main Thread

Every time a Java program starts up, one thread begins running which is called as the main

thread of the program because it is the one that is executed when your program begins.

 Child threads are produced from main thread

 Often it is the last thread to finish execution as it performs various shut down

operations

Creating a Thread

Java defines two ways in which this can be accomplished:

 You can implement the Runnable interface.

 You can extend the Thread class, itself.

Create Thread by Implementing Runnable

The easiest way to create a thread is to create a class that implements the Runnable interface.

To implement Runnable, a class need only implement a single method called run(), which is

declared like this:

public void run()

You will define the code that constitutes the new thread inside run() method. It is important

to understand that run() can call other methods, use other classes, and declare variables, just

like the main thread can.

After you create a class that implements Runnable, you will instantiate an object of type

Thread from within that class. Thread defines several constructors. The one that we will use is

shown here:

Here threadOb is an instance of a class that implements the Runnable interface and the name

of the new thread is specified by threadName. After the new thread is created, it will not start

running until you call its start() method, which is declared within Thread. The start()

method is shown here:

Thread(Runnable threadOb, String threadName);

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 98

Example to Create a Thread using Runnable Interface

Output:

Create Thread by Extending Thread

The second way to create a thread is to create a new class that extends Thread, and then to

create an instance of that class. The extending class must override the run() method,

which is the entry point for the new thread. It must also call start() to begin execution of the

new thread.

Example to Create a Thread by Extending Thread Class

void start();

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 99

Output:

Thread Methods

SN Methods with Description

1 public void start()

Starts the thread in a separate path of execution, then invokes the run() method

on this Thread object.

2 public void run()

If this Thread object was instantiated using a separate Runnable target,

the run() method is invoked on that Runnable object.

3 public final void setName(String name)

Changes the name of the Thread object. There is also a getName() method

for retrieving the name.

4 public final void setPriority(int priority)

Sets the priority of this Thread object. The possible values are between 1 and 10.

5 public final void setDaemon(boolean on)

A parameter of true denotes this Thread as a daemon thread.
6 public final void join(long millisec)

The current thread invokes this method on a second thread, causing the current

thread

 to block until the second thread terminates or the specified number of
milliseconds

passes.
7 public void interrupt()

Interrupts this thread, causing it to continue execution if it was blocked for any

reason.
8 public final boolean isAlive()

Returns true if the thread is alive, which is any time after the thread has been

started but before it runs to completion.

Q: Can we start a thread twice?

Ans: No, if a thread is started it can never be started again, if you do so, an

illegalThreadStateException is thrown. Example is shown below in which a same thread is

coded to start again

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 100

Use of Yield() Method

Causes the currently running thread to yield to any other threads of the same priority that are

waiting to be scheduled

Example

As you can see in the output below, thread A gets started and when condition if(i==2) gets

satisfied yield() method gets evoked and the control is relinquished from thread A to thread B

which run to its completion and only after that thread a regain the control back.

As you can see two statements to start a

same thread is written in the code

which will not give error during

compilation but when you run it you can

see an Exception as shown in the

Output Screenshot.

Output:

Condition is checked and when i==2

yield() method is evoked taking

control to thread B

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 101

Output

Use of stop() Method

The stop() method kills the thread on execution

Example

Output

Use of sleep() Method

Causes the currently running thread to block for at least the specified number of milliseconds.

You need to handle exception while using sleep() method.

Condition is checked and when i==2

stop() method is evoked causing

termination of thread execution

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 102

Example

Output

Use of suspend() and resume() method

A suspended thread can be revived by using the resume() method. This approach is useful

when we want to suspend a thread for some time due to certain reason but do not want to kill

it.

Following is the example in which two threads C and A are created. Thread C is started ahead

of Thread A, but C is suspended using suspend() method causing Thread A to get hold of the

processor allowing it to run and when Thread C is resumed using resume() method it runs to

its completion.

Condition is checked and when i==2

sleep() method is evoked which halts the

execution of the thread for 1000

milliseconds. When you see output there

is no change but there is delay in

execution.

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 103

Example

Although Thread ‘C’ is started earlier than

Thread ‘A’ but due to suspend method

Thread ‘A’ gets completed ahead of

Thread ‘C’

Output

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 104

Thread Priority

Every Java thread has a priority that helps the operating system determine the order in which

threads are scheduled.

Java priorities are in the range between MIN_PRIORITY (a constant of 1) and

MAX_PRIORITY (a constant of 10). By default, every thread is given priority

NORM_PRIORITY (a constant of 5).

Threads with higher priority are more important to a program and should be allocated

processor time before lower-priority threads. However, thread priorities cannot guarantee the

order in which threads execute and very much platform dependent.

Example

In the above code, you can see Priorities of Thread is set to maximum for Thread A which

lets it to run to completion ahead of C which is set to minimum priority.

Output:

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 105

Use of isAlive() and join() method

The java.lang.Thread.isAlive() method tests if this thread is alive. A thread is alive if it has been

started and has not yet died. Following is the declaration for java.lang.Thread.isAlive() method

public final boolean isAlive()

This method returns true if this thread is alive, false otherwise.

join() method waits for a thread to die. It causes the currently thread to stop executing until

the thread it joins with completes its task.

Example

At this point Thread A is

alive so the value gets

printed by isAlive() method

is “true”

Output

Now isAlive() method

returns the value false as

the Thread A is complete

join() method is called from

Thread A which stops

executing of further

statement until A is Dead

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 106

Synchronization

When two or more threads need access to a shared resource, they need some way to ensure

that the resource will be used by only one thread at a time. The process by which this

synchronization is achieved is called thread synchronization. The synchronized keyword in

Java creates a block of code referred to as a critical section. Every Java object with a critical

section of code gets a lock associated with the object. To enter a critical section, a thread needs

to obtain the corresponding object's lock.

synchronized(object)

{

// statements to be synchronized

}

Problem without using Synchronization

In the following example method updatesum() is not synchronized and access by both the

threads simultaneously which results in inconsistent output. Making a method synchronized,

Java creates a ―monitor‖ and hands it over to the thread that calls the method first time. As

long as the thread holds the monitor, no other thread can enter the synchronized section of the

code. Writing the method as synchronized will make one thread enter the method and till

execution is not complete no other thread can get access to the method.

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 107

Output

Output when
method is declared
as synchronized

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 108

Interthread Communication

It is all about making synchronized threads communicate with each other. It is a mechanism

in which a thread is paused running in its critical section and another thread is allowed to

enter in the same critical section to be executed. It is implemented by the following methods

of Object Class:

 wait(): This method tells the calling thread to give up the monitor and go to sleep

until some other thread enters the same monitor and calls notify().

 notify(): This method wakes up the first thread that called wait() on the same object.

 notifyAll(): This method wakes up all the threads that called wait() on the same

object. The highest priority thread will run first.

These methods are implemented as final methods in Object, so all classes have them. All three

methods can be called only from within a synchronized context.

Example

If both these methods are commented which
means there is no communication, output
will be inconsistent. See Output 2

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 109

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 110

Output 1:

Output 2:

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 111

UNIT-V

GUI Programming with Swing- Event Handling- Applets
INHERITANCE HIERARCHY FOR APPLETS :

Using HTML program: In order to run the applet through HTML program we must use

the following tag.

Syntax:

<applet code =”.class file of the applet” height = height value width = width

value>

</applet>

File name: MyApp.html

<HTML>

 <HEAD>

 <TITLE> My applet example </TITLE>

 </HEAD>

 <BODY>

 <APPLET code="MyApp" height=100 width=150>

 </APPLET>

 </BODY>

</HTML>

APPLET APPLICATION

Applets must have GUI.

Applet starts execution after init() method.

Applets can be embedded in HTML pages and

downloaded over the Internet.

Applets can only be executed inside a java compatible

container, such as a browser or appletviewer.

Applets execute under strict security limitations that

disallow certain operations (sandbox model security).

Applet cannot communicate with any server other than

which it is downloaded from.

Applet is an application that can be run on web

browser.

An applet can react to the user input and dynamically

change.

Applications may not have GUI.

Application starts execution after main() method.

Applications have no special support in HTML

for embedding or downloading.

Applications are executed at command line JVM

by java.exe or jview.exe.

Applications have no inherent security

restrictions.

They do not have such security restrictions as

applets.

Application is a program that runs in a standalone

machine.

An application can be an execution of a program

in the host system.

Applications are more general purpose programs.

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 112

APPLET LIFE CYCLE:

PUBLIC VOID INIT ():
1. which is called by the browser only one time after loading the applet.

2. This is the first method to execute.

3. It is an ideal place to initialize variables.

4. It is the best place to define the GUI Components (buttons, text fields, scrollbars, etc.),

lay them out, and add listeners to them.

5. Almost every applet you ever write will have an init() method.

PUBLIC VOID START ():
1. After calling the init method, the next method which is from second request to sub-

sequent requests the start method only will be called i.e., short method will be called each

and every time. In this method we write the block of statement which provides business

logic.

2. Called after init().

3. Used mostly in conjunction with stop().

4. start() and stop() are used when the Applet is doing time-consuming calculations that

you don‘t want to continue when the page is not in front .

PUBLIC VOID STOP():

1. Called when the browser leaves the page.

2. Called just before destroy() .

3. Use stop() if the applet is doing heavy computation that you don‘t want to continue

when the browser is on some other page.

4. Used mostly in conjunction with start() .

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 113

PUBLIC VOID DESTROY():
1. Seldom needed.

2. Called after stop() .

3. Use to explicitly release system resources (like threads).

4. System resources are usually released automatically.

PUBLIC VOID PAINT(GRAPHICS G) :
1. Needed if you do any drawing or painting other than just using standard GUI

Components.

2. Any painting you want to do should be done here, or in a method you call from here.

3. Painting that you do in other methods may or may not happen.

REPAINT() METHOD:
1. Call repaint() when you have changed something and want your changes to show up on

the screen.

2. repaint() is a request--it might not happen.

3. When you call repaint(), Java schedules a call to update(Graphics g).

Passing Parameters to Applets:

As just discussed, the APPLET tag in HTML allows you to pass parameters to your applet.

To retrieve a parameter, use the getParameter() method. It returns the value of the specified

parameter in the form of a String object. Thus, for numeric and boolean values, you will

need to convert their string representations into their internal formats. Here is an example

that demonstrates passing parameters:

// Use Parameters

import java.awt.*;

import java.applet.*;

/*

<applet code="ParamDemo" width=300 height=80>

<param name=fontName value=Courier>

<param name=fontSize value=14>

<param name=leading value=2>

<param name=accountEnabled value=true>

</applet>

*/

public class ParamDemo extends Applet

{

String fontName;

int fontSize;

float leading;

boolean active;

// Initialize the string to be displayed.

public void start()

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 114

{

String param;

fontName = getParameter("fontName");

if(fontName == null)

fontName = "Not Found";

param = getParameter("fontSize");

try

{

if(param != null) // if not found

fontSize = Integer.parseInt(param);

else

fontSize = 0;

}

catch(NumberFormatException e)

{

fontSize = -1;

}

param = getParameter("leading");

try

{

if(param != null) // if not found

leading = Float.valueOf(param).floatValue();

else

leading = 0;

}

catch(NumberFormatException e)

{

leading = -1;

}

param = getParameter("accountEnabled");

if(param != null)

active = Boolean.valueOf(param).booleanValue();

}

// Display parameters.

public void paint(Graphics g)

{

g.drawString("Font name: " + fontName, 0, 10);

g.drawString("Font size: " + fontSize, 0, 26);

g.drawString("Leading: " + leading, 0, 42);

g.drawString("Account Active: " + active, 0, 58);

}

}
Sample output from this program is shown here:

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 115

As the program shows, you should test the return values from getParameter().

If a parameter isn‘t available, getParameter() will return null. Also, conversions to numeric

types must be attempted in a try statement that catches NumberFormatException.

Uncaught exceptions should never occur within an applet.

Events

 In the delegation model, an event is an object that describes a state change in a source.

 It can be generated as a consequence of a person interacting with the elements in a graphical

user interface.

 Some of the activities that cause events to be generated are pressing a button, entering a

character via the keyboard, selecting an item in a list, and clicking the mouse.

 Events may also occur that are not directly caused by interactions with a user interface.

Event Sources

 A source is an object that generates an event. This occurs when the internal state of that

object changes in some way. Sources may generate more than one type of event.

 Asource must register listeners in order for the listeners to receive notifications about a

specific type of event.

 Each type of event has its own registration method. Here is the general form:

 public void addTypeListener(TypeListener el)

Here, Type is the name of the event, and el is a reference to the event listener.

Event Listeners

 A listener is an object that is notified when an event occurs. It has two major requirements.

 First, it must have been registered with one or more sources to receive notifications about

specific types of events.

 Second, it must implement methods to receive and process these notifications.

 The methods that receive and process events are defined in a set of interfaces found in

java.awt.event.

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 116

 For example, the MouseMotionListener interface defines two methods to receive

notifications when the mouse is dragged or moved.

Event Classes

 The classes that represent events are at the core of Java‘s event handling mechanism.

 At the root of the Java event class hierarchy is EventObject, which is in java.util.

 it is the superclass for all events. Its one constructor is shown here:

EventObject(Object src)

Here, src is the object that generates this event.

 EventObject contains two methods:

 getSource() and toString().The getSource() method returns the source

of the event. Its general form is shown here:

Object getSource()

 As expected, toString() returns the string equivalent of the event.

 The class AWTEvent, defined within the java.awt package, is a subclass of EventObject.

 It is the superclass (either directly or indirectly) of all AWT-based events used by the

delegation event model.

 Its getID() method can be used to determine the type of the event. The signature of this

method is shown here:

int getID()

 EventObject is a superclass of all events.

 AWTEvent is a superclass of all AWT events that are handled by the delegation event

model.

 The package java.awt.event defines many types of events that are generated by various user

interface elements.

The ActionEvent Class

 An ActionEvent is generated when a button is pressed, a list item is double-clicked, or a

menu item is selected. The ActionEvent class defines four integer constants that can be used

to identify any modifiers associated with an action event:

 ALT_MASK,

CTRL_MASK,

META_MASK, and

SHIFT_MASK.

In addition, there is an integer constant, ACTION_PERFORMED, which can be used to

identify action events.

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 117

 ActionEvent has these three constructors:

ActionEvent(Object src, int type, String cmd)

ActionEvent(Object src, int type, String cmd, int modifiers)

ActionEvent(Object src, int type, String cmd, long when, int modifiers)

You can obtain the command name for the invoking ActionEvent object by using the

getActionCommand() method, shown here:

String getActionCommand()

 The getModifiers() method returns a value that indicates which modifier keys (ALT, CTRL,

META, and/or SHIFT) were pressed when the event was generated. Its form is shown here:

int getModifiers()

The method getWhen() returns the time at which the event took place. This is called the event‘s

timestamp. The getWhen() method is shown here:

long getWhen()

Event Class Description

ActionEvent Generated when a button is pressed, a list item is double-clicked,

or a menu item is selected

AdjustmentEvent Generated when a scroll bar is manipulated.

ComponentEvent Generated when a component is hidden, moved, resized, or

becomes visible.

ContainerEvent Generated when a component is added to or removed from a

container.

FocusEvent Generated when a component gains or loses keyboard focus.

InputEvent Abstract superclass for all component input event classes.

ItemEvent Generated when a check box or list item is clicked; also occurs

when a choice selection is made or a checkable menu item is

selected or deselected.

KeyEvent Generated when input is received from the keyboard.

MouseEvent

 Generated when the mouse is dragged, moved, clicked, pressed,

or released;

also generated when the mouse enters or exits a component.

MouseWheelEvent Generated when the mouse wheel is moved.

TextEvent Generated when the value of a text area or text field is changed.

WindowEvent

Generated when a window is activated, closed, deactivated,

deiconified, iconified, opened, or quit.

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 118

The AdjustmentEvent Class

 An AdjustmentEvent is generated by a scroll bar. There are five types of adjustment events.

 The AdjustmentEvent class defines integer constants that can be used to identify them.

The constants and their meanings are shown here:

BLOCK_DECREMENT

 The user clicked inside the scroll bar to

decrease its value.

BLOCK_INCREMENT

The user clicked inside the scroll bar to

increase its value.

TRACK

The slider was dragged.

UNIT_DECREMENT

The button at the end of the scroll bar was

clicked to decrease its value.

UNIT_INCREMENT The button at the end of the scroll bar was

clicked to increase its value.

Here is one AdjustmentEvent constructor:

AdjustmentEvent(Adjustable src, int id, int type, int data)

The getAdjustable() method returns the object that generated the event. Its form is

shown here:

Adjustable getAdjustable()

int getValue()

The ComponentEvent Class

 A ComponentEvent is generated when the size, position, or visibility of a component is

changed. There are four types of component events.

The constants and their meanings are shown here:

COMPONENT_HIDDEN The component was hidden.

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 119

ComponentEvent has this constructor:

ComponentEvent(Component src, int type)

ComponentEvent is the superclass either directly or indirectly of ContainerEvent,

FocusEvent, KeyEvent, MouseEvent, and WindowEvent.

The getComponent() method returns the component that generated the event. It is

shown here:

Component getComponent()

The ContainerEvent Class

 A ContainerEvent is generated when a component is added to or removed from a container.

There are two types of container events.

COMPONENT_ADDED and COMPONENT_REMOVED.

 They indicate that a component has been added to or removed from the container.

 ContainerEvent is a subclass of ComponentEvent and has this constructor:

ContainerEvent(Component src, int type, Component comp)

You can obtain a reference to the container that generated this event by using the

getContainer() method, shown here:

Container getContainer()

The getChild() method returns a reference to the component that was added to or removed from

the container. Its general form is shown here:

Component getChild()

The FocusEvent Class

 A FocusEvent is generated when a component gains or loses input focus. These events

areidentified by the integer constants FOCUS_GAINED and FOCUS_LOST.

FocusEvent is a subclass of ComponentEvent and has these constructors:

FocusEvent(Component src, int type)

FocusEvent(Component src, int type, boolean temporaryFlag)

FocusEvent(Component src, int type, boolean temporaryFlag, Component other)

COMPONENT_MOVED The component was moved.

COMPONENT_RESIZED The component was resized.

COMPONENT_SHOWN The component became visible.

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 120

You can determine the other component by calling getOppositeComponent(),

shown here:

Component getOppositeComponent()

The opposite component is returned.

The isTemporary() method indicates if this focus change is temporary. Its form

is shown here:

boolean isTemporary()

The method returns true if the change is temporary. Otherwise, it returns false.

The InputEvent Class

 The abstract class InputEvent is a subclass of ComponentEvent and is the superclass for

component input events. Its subclasses are KeyEvent and MouseEvent.

The InputEvent class defined the following eight values to represent the modifiers:

ALT_MASK BUTTON2_MASK META_MASK

ALT_GRAPH_MASK BUTTON3_MASK SHIFT_MASK

BUTTON1_MASK CTRL_MASK

 The following extended modifier values were added because of possible conflicts between

the modifiers used by keyboard events and mouse events, and other issues.

ALT_DOWN_MASK BUTTON2_DOWN_MASK META_DOWN_MASK

ALT_GRAPH_DOWN_MASK BUTTON3_DOWN_MASK SHIFT_DOWN_MASK

BUTTON1_DOWN_MASK CTRL_DOWN_MASK

The forms of these methods are shown here:

boolean isAltDown()

boolean isAltGraphDown()

boolean isControlDown()

boolean isMetaDown()

boolean isShiftDown()

 You can obtain a value that contains all of the original modifier flags by calling the

getModifiers() method. It is shown here:

int getModifiers()

 You can obtain the extended modifiers by calling getModifiersEx(), which is shown here:

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 121

int getModifiersEx()

The ItemEvent Class

 An ItemEvent is generated when a check box or a list item is clicked or when checkable

menu item is selected or deselected.There are two types of item events, which are identified

by the following integer constants:

DESELECTED The user deselected an item.

SELECTED The user selected an item.

 In addition, ItemEvent defines one integer constant, ITEM_STATE_CHANGED, that

signifies a change of state. ItemEvent has this constructor:

ItemEvent(ItemSelectable src, int type, Object entry, int state)

 The getItem() method can be used to obtain a reference to the item that generated an event.

Its signature is shown here:

Object getItem()

 the getItemSelectable() method can be used to obtain a reference to the ItemSelectable

object that generated an event. Its general form is shown here:

ItemSelectable getItemSelectable()

 Lists and choices are examples of user interface elements that implement the ItemSelectable

interface.

 The getStateChange() method returns the state change (that is, SELECTED or

DESELECTED) for the event. It is shown here:

int getStateChange()

The KeyEvent Class

 A KeyEvent is generated when keyboard input occurs. There are three types of key events,

which are identified by these integer constants: KEY_PRESSED, KEY_RELEASED, and

KEY_TYPED.

 The first two events are generated when any key is pressed or released.The last event occurs

only when a character is generated.

 There are many other integer constants that are defined by KeyEvent. For example, VK_0

through VK_9 and VK_A through VK_Z define the ASCII equivalents of the numbers and

letters. Here are some others:

VK_ALT VK_DOWN VK_LEFT VK_RIGHT

VK_CANCEL VK_ENTER VK_PAGE_DOWN VK_SHIFT

VK_CONTROL VK_ESCAPE VK_PAGE_UP VK_UP

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 122

 The VK constants specify virtual key codes and are independent of any modifiers, such as

control, shift, or alt.KeyEvent is a subclass of InputEvent. Here is one of its constructors:

KeyEvent(Component src, int type, long when, int modifiers, int code, char ch)

 The KeyEvent class defines several methods, but the most commonly used ones are

getKeyChar(), which returns the character that was entered, and getKeyCode(), which

returns the key code. Their general forms are shown here:

char getKeyChar()

int getKeyCode()

 If no valid character is available, then getKeyChar() returns CHAR_UNDEFINED. When

a KEY_TYPED event occurs, getKeyCode() returns VK_UNDEFINED.

The MouseEvent Class

 There are eight types of mouse events. The MouseEvent class defines the following integer

constants that can be used to identify them:

MOUSE_CLICKED The user clicked the mouse.

MOUSE_DRAGGED The user dragged the mouse.

MOUSE_ENTERED The mouse entered a component.

MOUSE_EXITED The mouse exited from a component.

MOUSE_MOVED The mouse moved.

MOUSE_PRESSED The mouse was pressed.

MOUSE_RELEASED The mouse was released.

MOUSE_WHEEL The mouse wheel was moved.

MouseEvent is a subclass of InputEvent. Here is one of its constructors:

MouseEvent(Component src, int type, long when, int modifiers,

 int x, int y, int clicks, boolean triggersPopup)

 Two commonly used methods in this class are getX() and getY(). These return the X and Y

coordinates of the mouse within the component when the event occurred. Their forms are

shown here:

int getX()

int getY()

Alternatively, you can use the getPoint() method to obtain the coordinates of the mouse.It is

shown here:

Point getPoint()

 It returns a Point object that contains the X,Y coordinates in its integer members: x and

y.The translatePoint() method changes the location of the event. Its form is shown here:

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 123

void translatePoint(int x, int y)

 Here, the arguments x and y are added to the coordinates of the event.

 The getClickCount() method obtains the number of mouse clicks for this event.

 Its signature is shown here:

int getClickCount()

Also available is the getButton() method, shown here:

int getButton()

 It returns a value that represents the button that caused the event. The return value will be one

of these constants defined by MouseEvent:

NOBUTTON BUTTON1 BUTTON2 BUTTON3

 Java SE 6 added three methods to MouseEvent that obtain the coordinates of the mouse

relative to the screen rather than the component. They are shown here:

Point getLocationOnScreen()

int getXOnScreen()

int getYOnScreen()

 The getLocationOnScreen() method returns a Point object that contains both the X and Y

coordinate. The other two methods return the indicated coordinate.

The MouseWheelEvent Class

 The MouseWheelEvent class encapsulates a mouse wheel event. It is a subclass of

MouseEvent.Not all mice have wheels.

WHEEL_BLOCK_SCROLL A page-up or page-down scroll event occurred.

WHEEL_UNIT_SCROLL A line-up or line-down scroll event occurred.

Here is one of the constructors defined by MouseWheelEvent:

MouseWheelEvent(Component src, int type, long when, int modifiers,

 int x, int y, int clicks, boolean triggersPopup,

 int scrollHow, int amount, int count)

 MouseWheelEvent defines methods that give you access to the wheel event. To obtain the

number of rotational units, call getWheelRotation(), shown here:

int getWheelRotation()

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 124

 It returns the number of rotational units. If the value is positive, the wheel moved

counterclockwise. If the value is negative, the wheel moved clockwise.

To obtain the type of scroll, call getScrollType(), shown below:

int getScrollType()

 It returns either WHEEL_UNIT_SCROLL or WHEEL_BLOCK_SCROLL.If the scroll

type is WHEEL_UNIT_SCROLL, you can obtain the number of units to scroll by calling

getScrollAmount(). It is shown here:

int getScrollAmount()

The TextEvent Class

 Instances of this class describe text events. These are generated by text fields and text areas

when characters are entered by a user or program. TextEvent defines the integer constant

TEXT_VALUE_CHANGED.The one constructor for this class is shown here:

TextEvent(Object src, int type)

Here, src is a reference to the object that generated this event. The type of the event is specified

by type.

 The TextEvent object does not include the characters currently in the text component that

generated the event. Instead, your program must use other methods associated with the text

component to retrieve that information.

 This operation differs from other event objects discussed in this section. For this reason, no

methods are discussed here for the TextEvent class. Think of a text event notification as a

signal to a listener that it should retrieve information from a specific text component.

The WindowEvent Class

 There are ten types of window events. TheWindowEvent class defines integer constants that

can be used to identify them. The constants and their meanings

are shown here:

WINDOW_ACTIVATED The window was activated.

WINDOW_CLOSED The window has been closed.

WINDOW_CLOSING The user requested that the window be closed

WINDOW_DEACTIVATED The window was deactivated.

WINDOW_DEICONIFIED The window was deiconified.

WINDOW_GAINED_FOCUS The window gained input focus.

WINDOW_ICONIFIED The window was iconified.

WINDOW_LOST_FOCUS The window lost input focus.

WINDOW_OPENED The window was opened.

WindowEvent is a subclass of ComponentEvent. It defines several constructors. The first is

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 125

WindowEvent(Window src, int type)

Here, src is a reference to the object that generated this event. The type of the event is type.The

next three constructors offer more detailed control:

WindowEvent(Window src, int type, Window other)

WindowEvent(Window src, int type, int fromState, int toState)

WindowEvent(Window src, int type, Window other, int fromState, int toState)

 A commonly used method in this class is getWindow(). It returns the Window object that

generated the event. Its general form is shown here:

Window getWindow()

 WindowEvent also defines methods that return the opposite window (when a focus or

activation event has occurred), the previous window state, and the current window

state.These methods are shown here:

Window getOppositeWindow()

int getOldState()

int getNewState()

Sources of Events

Event Source Description

Button Generates action events when the button is pressed.

Check box Generates item events when the check box is selected or deselected.

Choice Generates item events when the choice is changed.

List Generates action events when an item is double-clicked; generates item

events when an item is selected or deselected.

Menu Item Generates action events when a menu item is selected; generates item

events when a checkable menu item is selected or deselected.

Scroll bar Generates adjustment events when the scroll bar is manipulated.

Text components Generates text events when the user enters a character.

Window Generates window events when a window is activated, closed,

deactivated,deiconified, iconified, opened, or quit.

Event Listener Interfaces

 As explained,the delegation event model has two parts: sources and listeners.

 Listeners are created by implementing one or more of the interfaces defined by the

java.awt.event package.When an event occurs, the event source invokes the appropriate

method defined by the listener and provides an event object as its argument.

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 126

Interface Description

ActionListener Defines one method to receive action events.

AdjustmentListener Defines one method to receive adjustment events.

ComponentListener Defines four methods to recognize when a component is

hidden,moved, resized, or shown.

ContainerListener Defines two methods to recognize when a component is added to

or removed from a container.

FocusListener Defines two methods to recognize when a component gains or

loses keyboard focus.

ItemListener Defines one method to recognize when the state of an item

changes.

KeyListener Defines three methods to recognize when a key is pressed,

released,or typed.

MouseListener Defines five methods to recognize when the mouse is clicked,

enters a component, exits a component, is pressed, or is released.

MouseMotionListener Defines two methods to recognize when the mouse is dragged or

moved.

MouseWheelListener Defines one method to recognize when the mouse wheel is

moved.

TextListener Defines one method to recognize when a text value changes.

WindowFocusListener Defines two methods to recognize when a window gains or loses

input focus.

WindowListener Defines seven methods to recognize when a window is

activated,closed, deactivated, deiconified, iconified, opened, or

quit.

The ActionListener Interface

 This interface defines the actionPerformed() method that is invoked when an action event

occurs. Its general form is shown here:

void actionPerformed(ActionEvent ae)

The AdjustmentListener Interface

 This interface defines the adjustmentValueChanged() method that is invoked when an

adjustment event occurs. Its general form is shown here:

void adjustmentValueChanged(AdjustmentEvent ae)

The ComponentListener Interface

 This interface defines four methods that are invoked when a component is resized,

moved,shown,or hidden. Their general forms are shown here:

void componentResized(ComponentEvent ce)

void componentMoved(ComponentEvent ce)

void componentShown(ComponentEvent ce)

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 127

void componentHidden(ComponentEvent ce)

The ContainerListener Interface

 This interface contains two methods. When a component is added to a container,

componentAdded() is invoked.

 When a component is removed from a container,componentRemoved() is invoked. Their

general forms are shown here:

void componentAdded(ContainerEvent ce)

void componentRemoved(ContainerEvent ce)

The FocusListener Interface

 This interface defines two methods. When a component obtains keyboard focus,

focusGained() is invoked.

 When a component loses keyboard focus, focusLost() is called. Their general forms are

shown here:

void focusGained(FocusEvent fe)

void focusLost(FocusEvent fe)

The ItemListener Interface

 This interface defines the itemStateChanged() method that is invoked when the state of an

item changes. Its general form is shown here:

void itemStateChanged(ItemEvent ie)

The KeyListener Interface

 This interface defines three methods. The keyPressed() and keyReleased() methods are

invoked when a key is pressed and released, respectively.

 The keyTyped() method is invoked when a character has been entered.The general forms of

these methods are shown here:

void keyPressed(KeyEvent ke)

void keyReleased(KeyEvent ke)

void keyTyped(KeyEvent ke)

The MouseListener Interface

 This interface defines five methods. If the mouse is pressed and released at the same

point,mouseClicked() is invoked.

 When the mouse enters a component, the mouseEntered() method is called. When it leaves,

mouseExited() is called.

 The mousePressed() and mouseReleased() methods are invoked when the mouse is

pressed and released, respectively.The general forms of these methods are shown here:

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 128

void mouseClicked(MouseEvent me)

void mouseEntered(MouseEvent me)

void mouseExited(MouseEvent me)

void mousePressed(MouseEvent me)

void mouseReleased(MouseEvent me)

The MouseMotionListener Interface

 This interface defines two methods. The mouseDragged() method is called multiple times

as the mouse is dragged.

 The mouseMoved() method is called multiple times as the mouse is moved.Their general

forms are shown here:

void mouseDragged(MouseEvent me)

void mouseMoved(MouseEvent me)

The MouseWheelListener Interface

 This interface defines the mouseWheelMoved() method that is invoked when the mouse

wheel is moved. Its general form is shown here:

void mouseWheelMoved(MouseWheelEvent mwe)

The TextListener Interface

 This interface defines the textChanged() method that is invoked when a change occurs in a

text area or text field. Its general form is shown here:

void textChanged(TextEvent te)

The WindowFocusListener Interface

 This interface defines two methods: windowGainedFocus() and windowLostFocus().

These are called when a window gains or loses input focus. Their general forms are shown

here:

void windowGainedFocus(WindowEvent we)

void windowLostFocus(WindowEvent we)

The WindowListener Interface

 This interface defines seven methods. The windowActivated() and windowDeactivated()

methods are invoked when a window is activated or deactivated, respectively.

 If a window is iconified, the windowIconified() method is called.

 When a window is deiconified,the windowDeiconified() method is called.

 When a window is opened or closed,the windowOpened() or windowClosed() methods are

called, respectively.

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 129

 The windowClosing() method is called when a window is being closed. The general forms

of these methods are

void windowActivated(WindowEvent we)

void windowClosed(WindowEvent we)

void windowClosing(WindowEvent we)

void windowDeactivated(WindowEvent we)

void windowDeiconified(WindowEvent we)

void windowIconified(WindowEvent we)

void windowOpened(WindowEvent we)

Using the Delegation Event Model

Applet programming using the delegation event model is actually quite easy. Just follow these

two steps:

 Implement the appropriate interface in the listener so that it will receive the type of event

desired.

 Implement code to register and unregister (if necessary) the listener as a recipient for the

event notifications.

Handling Mouse Events

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="MouseEvents" width=300 height=100>

</applet>

*/

public class MouseEvents extends Applet implements MouseListener, MouseMotionListener

{

String msg = "";

int mouseX = 0, mouseY = 0;

// coordinates of mouse

 public void init()

 {

 addMouseListener(this);

 addMouseMotionListener(this);

 }

 // Handle mouse clicked.

 public void mouseClicked(MouseEvent me)

 {

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 130

 // save coordinates

 mouseX = 0;

 mouseY = 10;

 msg = "Mouse clicked.";

 repaint();

 }

 // Handle mouse entered.

 public void mouseEntered(MouseEvent me)

 {

 // save coordinates

 mouseX = 0;

 mouseY = 10;

 msg = "Mouse entered.";

 repaint();

 }

// Handle button pressed.

public void mousePressed(MouseEvent me)

{

 // save coordinates

 mouseX = me.getX();

 mouseY = me.getY();

 msg = "Down";

 repaint();

}

// Handle button released.

public void mouseReleased(MouseEvent me)

{

 // save coordinates

 mouseX = me.getX();

 mouseY = me.getY();

 msg = "Up";

 repaint();

}

// Handle mouse exited.

 public void mouseExited(MouseEvent me)

 {

 // save coordinates

 mouseX = 0;

 mouseY = 10;

 msg = "Mouse exited.";

 repaint();

 }

// Handle mouse dragged.

public void mouseDragged(MouseEvent me)

{

 // save coordinates

 mouseX = me.getX();

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 131

 mouseY = me.getY();

 msg = "*";

 showStatus("Dragging mouse at " + mouseX + ", " + mouseY);

 repaint();

}

 // Handle mouse moved.

 public void mouseMoved(MouseEvent me)

 {

 // show status

 showStatus("Moving mouse at " + me.getX() + ", " + me.getY());

 }

 // Display msg in applet window at current X,Y location.

 public void paint(Graphics g)

 {

 g.drawString(msg, mouseX, mouseY);

 }

}

Adapter Classes

 An adapter class provides an empty implementation of all methods in an event listener

interface.

 For example, the MouseMotionAdapter class has two methods, mouseDragged() and

mouseMoved().

// Demonstrate an adapter.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="AdapterDemo" width=300 height=100>

</applet>

*/

public class AdapterDemo extends Applet

{

public void init()

{

addMouseListener(new MyMouseAdapter(this));

addMouseMotionListener(new MyMouseMotionAdapter(this));

}

}

class MyMouseAdapter extends MouseAdapter

{

 AdapterDemo adapterDemo;

 public MyMouseAdapter(AdapterDemo adapterDemo)

 {

 this.adapterDemo = adapterDemo;

 }

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 132

 // Handle mouse clicked.

 public void mouseClicked(MouseEvent me)

 {

 adapterDemo.showStatus("Mouse clicked");

 }

}

class MyMouseMotionAdapter extends MouseMotionAdapter

{

 AdapterDemo adapterDemo;

 public MyMouseMotionAdapter(AdapterDemo adapterDemo)

 {

 this.adapterDemo = adapterDemo;

 }

 // Handle mouse dragged.

 public void mouseDragged(MouseEvent me)

 {

 adapterDemo.showStatus("Mouse dragged");

 }

}

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 133

INTRODUCION OF SWINGS

Although the AWT is still a crucial part of Java, its component set is no longer

widely used to create graphic user interfaces. Today, most programmers use Swing for this

purpose. Swing is a set of Classes that provides more powerful and flexible GUI

components than does the AWT.Simply put, Swing provides the look and feel of the

modern Java GUI.

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 134

:CONTAINERS:

:JFrame:

Frame encapsulates what is commonly thought of as a ―window.‖It is a subclass

of Window and has a titlebar,menubar,borders,andresizing corners.If you create a Frame

object from within an applet, it will contain a warning message, such as ―Java Applet

Window,‖ to the user that an applet window has been created. This message warns users

that the window they see was started by an applet and not by software running on their

computer.When a Frame window is created by a stand-alone application rather than an

applet, a normal window is created.

 AWT Swing

AWT stands for Abstract windows toolkit. Swing is also called as JFC‘s (Java Foundation

classes).

AWT components are called Heavyweight

component.

Swings are called light weight component because

swing components sits on the top of AWT components

and do the work.

AWT components require java.awt package. Swing components require javax.swing package.

AWT components are platform dependent. Swing components are made in purely java and they

are platform independent.

This feature is not supported in AWT. We can have different look and feel in Swing.

These feature is not available in AWT. Swing has many advanced features like JTabel, Jtabbed

pane which is not available in AWT. Also. Swing

components are called "lightweight" because they do

not require a native OS object to implement their

functionality. JDialog and JFrame are heavyweight,

because they do have a peer. So components like

JButton, JTextArea, etc., are lightweight because they

do not have an OS peer.

With AWT, you have 21 "peers" (one for each

control and one for the dialog itself). A "peer" is

a widget provided by the operating system, such

as a button object or an entry field object.

With Swing, you would have only one peer, the

operating system's window object. All of the buttons,

entry fields, etc. are drawn by the Swing package on

the drawing surface provided by the window object.

This is the reason that Swing has more code. It has to

draw the button or other control and implement its

behavior instead of relying on the host operating

system to perform those functions.

AWT is a thin layer of code on top of the OS. Swing is much larger. Swing also has very much richer

functionality.

Using AWT, you have to implement a lot of

things yourself.

Swing has them built in.

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 135

Working with Frame Windows:

After the applet, the type of window you will most often create is derived from Frame.You will

use it to create child windows with in applets, and top-level or child windows for stand-alone

applications. As mentioned, it creates a standard-style window.

Here are two of Frame’s constructors:

 Frame() Frame(String title)

The first form creates a standard window that does not contain a title.The second form creates a

window with the title specified by title. Notice that you cannot specify the dimensions of the

window. Instead, you must set the size of the window after it has been created.

There are several key methods you will use when working with Frame windows. They are

examined here. Setting the Window‘s Dimensions:

 The setSize() method: is used to set the dimensions of the window.Its signature is shown

here:void setSize(int newWidth, int newHeight)

 The getSize() method: is used to obtain the current size of a window. Its signature is

shown here: Dimension getSize()

 The setTitle() method: Setting a Window‘s Title You can change the title in a frame

window.

 The windowClosing() method: To intercept a window-close event.

// Create a child frame window from within an applet.

 import java.awt.*;

import java.awt.event.*;

import java.applet.*;

 /*

 <applet code="AppletFrame" width=300 height=50>

 </applet>

*/

// Create a subclass of Frame.

class SampleFrame extends Frame

{

 SampleFrame(String title)

 {

super(title);

 // create an object to handle window events

 MyWindowAdapter adapter = new MyWindowAdapter(this);

 // register it to receive those events

 addWindowListener(adapter);

 }

 public void paint(Graphics g)

 {

 g.drawString("This is in frame window", 10, 40);

 }

 }

class MyWindowAdapter extends WindowAdapter

 {

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 136

SampleFrame sampleFrame;

 public MyWindowAdapter(SampleFrame sampleFrame)

 {

this.sampleFrame = sampleFrame;

 }

public void windowClosing(WindowEvent we)

 {

 sampleFrame.setVisible(false);

 }

 }

// Create frame window.

public class AppletFrame extends Applet

 {

 Frame f;

 public void init()

{

 f = new SampleFrame("A Frame Window");

f.setSize(250, 250); f.setVisible(true);

}

public void start()

 {

 f.setVisible(true);

}

public void stop()

{

 f.setVisible(false);

 }

 public void paint(Graphics g)

 {

g.drawString("This is in applet window", 10, 20);

}

}

: JApplet:

Fundamental to Swing is the JApplet classApplets that use Swing must be subclasses of

JApplet.JApplet supports various ―panes,‖ such as the contentpane, the glass pane, and the root

pane.

When adding a component to an instance of JApplet, do not invoke the add() method of the

applet. Instead, call add() for the content pane of the Japplet object.

Container getContentPane()

 add() method of Container can be used to add a component to a content pane

 void add(comp)

:JDialog:
A Dialog window is an independent subwindow meant to carry temporary notice apart

from the main Swing Application Window. Most Dialogs present an error message or

warning to a user, but Dialogs can present images, directory trees, or just about anything

compatible with the main Swing Application that manages them.

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 137

:JPanel:

JPanel is a Swing‘s lightweight container which is used to group a set of components

together. JPanel is a pretty simple component which, normally, does not have a GUI (except

when it is being set an opaque background or has a visual border).

Constructor:

 JPanel() : Create a new JPanel with a double buffer and a flow layout

 JPanel(boolean isDoubleBuffered)

 Create a new JPanel with FlowLayout and the specified buffering strategy.

 JPanel(java.awt.LayoutManager layout)

 Create a new buffered JPanel with the specified layout manager

 JPanel(java.awt.LayoutManager layout, boolean isDoubleBuffered)

 Creates a new JPanel with the specified layout manager and buffering strategy.

import javax.swing.JButton;

import javax.swing.JFrame;

import javax.swing.JPanel;

public class PanelWithComponents

{

public static void main(String[] a)

 {

 JPanel panel = new JPanel();

 JButton okButton = new JButton("OK");

 panel.add(okButton);

 JButton cancelButton = new JButton("Cancel");

 panel.add(cancelButton);

 JFrame frame = new JFrame("Oval Sample");

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 frame.add(panel);

 frame.setSize(300, 200);

 frame.setVisible(true);

 }

}

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 138

OVERVIEW OF SOME SWING COMPONENTS:

:JBUTTON:

The JButton class provides the functionality of a push button. JButton allows an icon, a string, or

both.

 JButton(Icon i)

 JButton(String s)

 JButton(String s, Icon i)

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

/*

<applet code="JButtonDemo" width=250 height=300>

</applet>

*/

public class JButtonDemo extends JApplet implements ActionListener {

JTextField jtf;

public void init()

{

// Get content pane

Container contentPane = getContentPane();

contentPane.setLayout(new FlowLayout());

// Add buttons to content pane

ImageIcon france = new ImageIcon("france.gif");

JButton jb = new JButton(france);

jb.setActionCommand("France");

jb.addActionListener(this);

contentPane.add(jb);

ImageIcon germany = new ImageIcon("germany.gif");

jb = new JButton(germany);

jb.setActionCommand("Germany");

jb.addActionListener(this);

contentPane.add(jb);

ImageIcon italy = new ImageIcon("italy.gif");

jb = new JButton(italy);

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 139

jb.setActionCommand("Italy");

jb.addActionListener(this);

contentPane.add(jb);

ImageIcon italy = new ImageIcon("italy.gif");

jb = new JButton(italy);

jb.setActionCommand("Italy");

jb.addActionListener(this);

contentPane.add(jb);

ImageIcon japan = new ImageIcon("japan.gif");

jb = new JButton(japan);

jb.setActionCommand("Japan");

jb.addActionListener(this);

contentPane.add(jb);

// Add text field to content pane

jtf = new JTextField(15);

contentPane.add(jtf);

}

public void actionPerformed(ActionEvent ae) {

jtf.setText(ae.getActionCommand());

}

}

:JLabel:

Swing labels are instances of the JLabel class, which extends JComponent.

It can display text and/or an icon:

 JLabel(Icon i)

 Label(String s)

 JLabel(String s, Icon i, int align)

The align argument is either LEFT, RIGHT, CENTER, LEADING, or TRAILING .These

constants are defined in the SwingConstants interface.

 /*

 <applet code="JLabelDemo" width=250 height=150>

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 140

 </applet>

 */

 public class JLabelDemo extends Japplet

 {

 public void init()

{

 // Get content pane

 Container contentPane = getContentPane();

 // Create an icon

 ImageIcon ii = new ImageIcon("france.gif");

 // Create a label

 JLabel jl = new JLabel("France", ii, JLabel.CENTER);

 // Add label to the content pane

 contentPane.add(jl);

 }

 }

:Text Fields:

The Swing text field is encapsulated by the JTextComponent class, which extends Jcomponent

JTextField, which allows you to edit one line of text.

 JTextField()

 JTextField(int cols)

 JTextField(String s, int cols)

 JTextField(String s)

import java.awt.*;

import javax.swing.*;

/*

<applet code="JTextFieldDemo" width=300 height=50>

</applet>

*/

public class JTextFieldDemo extends Japplet

 {

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 141

JTextField jtf;

public void init()

{

// Get content pane

Container contentPane = getContentPane();

contentPane.setLayout(new FlowLayout());

// Add text field to content pane

jtf = new JTextField(15);

contentPane.add(jtf);

}

}

:JTextArea:

The JTextArea class is used to create a text area. It is a multiline area that displays the plain text

only.

Commonly used Constructors:

JTextArea(): creates a text area that displays no text initially.

JTextArea(String s): creates a text area that displays specified text initially.

JTextArea(int row, int column): creates a text area with the specified number of rows and

columns that displays no text initially..

JTextArea(String s, int row, int column): creates a text area with the specified number of rows

and columns that displays specified text.

Commonly used methods of JTextArea class:

1) public void setRows(int rows): is used to set specified number of rows.

2) public void setColumns(int cols): is used to set specified number of columns.

3) public void setFont(Font f): is used to set the specified font.

4) public void insert(String s, int position): is used to insert the specified text on the specified

position.

5) public void append(String s): is used to append the given text to the end of the document.

import java.awt.Color;

import javax.swing.*;

public class TArea

{

 JTextArea area;

 JFrame f;

 TArea(){

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 142

 f=new JFrame();

 area=new JTextArea(300,300);

 area.setBounds(10,30,300,300);

 area.setBackground(Color.black);

 area.setForeground(Color.white);

 f.add(area);

 f.setSize(400,400);

 f.setLayout(null);

 f.setVisible(true); }

 public static void main(String[] args)

 {

 new TArea();

 }

}

LAYOUT MANAGERS

Def:

The standard procedures which exactly specifies the way in which we align the components on

the container are known as Layout Manager.

TYPES OF LAYOUT MANAGERS:

 BorderLayout

 BoxLayout

 CardLayout

 FlowLayout

 GridBagLayout

 GridLayout

 GroupLayout

 SpringLayout

:BorderLayout():

BorderLayout(int horz, int vert) The second allows you to specify the horizontal and vertical

space left between components in horz and vert.

void add(Component compObj, Object region); compObj is the component to be added,

regions:

 BorderLayout.CENTER BorderLayout.SOUTH

 BorderLayout.EAST BorderLayout.WEST

 BorderLayout.NORTH

import java.awt.*;

import java.applet.*;

import java.util.*;

/*

<applet code="BorderLayoutDemo" width=400 height=200>

</applet>

*/

public class BorderLayoutDemo extends Applet

{

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 143

 public void init()

 {

 setLayout(new BorderLayout());

 add(new Button("This is across the top."),

 BorderLayout.NORTH);

 add(new Label("The footer message might go here."),

 BorderLayout.SOUTH);

 add(new Button("Right"), BorderLayout.EAST);

 add(new Button("Left"), BorderLayout.WEST);

 String msg = "The reasonable man adapts " +

 "himself to the world;\n" +

 "the unreasonable one persists in " +

 "trying to adapt the world to himself.\n" + “ Therefore all progress depends " +

 "on the unreasonable man.\n\n" +

 " - George Bernard Shaw\n\n";

 add(new TextArea(msg), BorderLayout.CENTER);

 }

 }

:GridLayout:

The container will be divided into specific no of rows and columns of equal size

GridLayout has two constructors:

 public GridLayout(int rows, int cols);

creates a grid layout with the specified rows and columns.

 public GridLayout(int rows, int cols, int hgap, int vgap);

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 144

creates a grid layout with the specified rows and columns ,also lets you specify a minimal

horizontal and vertical gap to appear between the components.Each division is called cell or grid

:FLOW LAYOUT:

 FlowLayout is the default layout manager Components are laid out from the upper-left

corner, left to right and top to bottom.

 FlowLayout()which centers components and leaves five pixels of space between each

component

 FlowLayout(int how)specify how each line is aligned.

 FlowLayout.LEFT

 FlowLayout.CENTER

 FlowLayout.RIGHT

 FlowLayout(int how, int horz, int vert)

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="FlowLayoutDemo" width=250 height=200>

</applet>

*/

public class FlowLayoutDemo extends Applet implements

ItemListener

{

 String msg = "";

 Checkbox Win98, winNT, solaris, mac;

 public void init()

 {

 // set left-aligned flow layout

 setLayout(new FlowLayout(FlowLayout.LEFT));

 Win98 = new Checkbox("Windows 98/XP", null, true);

 winNT = new Checkbox("Windows NT/2000");

 solaris = new Checkbox("Solaris");

 mac = new Checkbox("MacOS");

 add(Win98);

 add(winNT);

DAYAKAR GURRAM ASST. PROFESSOR CSE AVNIET Page 145

 add(solaris);

 add(mac);

 // register to receive item events

 Win98.addItemListener(this);

 winNT.addItemListener(this);

 solaris.addItemListener(this);

 mac.addItemListener(this);

}

public void itemStateChanged(ItemEvent ie)

{

 repaint();

}

}

