

AVN INSTITUTE OF ENGINEERING & TECHNOLOGY

PATEL GUDA, IBRAHIMPATNAM (M), R.R.Dist, 501510, T.S

Ph.No. 08415-201345, www.avniet.ac.in, Email: avn.principal@gmail.com

Accredited with 'B++' Grade by NAAC

Presentation on "INTRODUCTION TO MICRONTROLLER 8051"

BY Somashekhar Malipatil Asst.Professor Department of ECE

Contents:

- Introduction
- Block Diagram and Pin Description of the 8051
- Registers
- Memory mapping in 8051
- Stack in the 8051
- I/O Port Programming
- Timer
- Interrupt

Why do we need to learn Microprocessors/controllers?

- The microprocessor is the core of computer systems.
- Nowadays many communication, digital entertainment, portable devices, are controlled by them.
- A designer should know what types of components he needs, ways to reduce production costs and product reliable.

Different aspects of a microprocessor/controller

• Hardware :Interface to the real world

• Software :order how to deal with inputs

The necessary tools for a microprocessor/controller

- CPU: Central Processing Unit
- I/O: Input /Output
- Bus: Address bus & Data bus
- Memory: RAM & ROM
- Timer
- Interrupt
- Serial Port
- Parallel Port

Microprocessors:

General-purpose microprocessor

- CPU for Computers
- No RAM, ROM, I/O on CPU chip itself
- Example : Intel's x86, Motorola's 680x0

General-Purpose Microprocessor System

Microcontroller :

- A smaller computer
- On-chip RAM, ROM, I/O ports...
- Example : Motorola's 6811, Intel's 8051, Zilog's Z8 and PIC 16X

Microprocessor vs. Microcontroller

Microprocessor

- CPU is stand-alone, RAM, ROM, I/O, timer are separate
- designer can decide on the amount of ROM, RAM and I/O ports.
- expansive
- versatility
- general-purpose

Microcontroller

- CPU, RAM, ROM, I/O and timer are all on a single chip
- fix amount of on-chip ROM, RAM, I/O ports
 - for applications in which cost, power and space are critical
- single-purpose

Block Diagram

Pin Description of the 8051

 \boxtimes

Figure (b). Power-On RESET Circuit

Tuesday, April 16, 2019

Port 0 with Pull-Up Resistors

Registers

А	
В	
RO	DPTR
R1	
R2	PC
R3	
R4	-
R5	
R6	
R7	

DPH		DPL
	PC	

Some 8051 16-bit Register

Some 8-bitt Registers of the 8051

Stack in the 8051

Interrupt :

Program execution without intrrupts :

Program execution with intrrupts :

Numerical Bases Used in Programming

Hexadecimal

Binary

BCD

Tuesday, April 16, 2019

Hexadecimal Basis

Hexadecimal Digits:

1 2 3 4 5 6 7 8 9 A B C D E F

A=10 B=11 C=12 D=13 E=14F=15

Decimal, Binary, BCD, & Hexadecimal Numbers

$$(43)_{10} =$$

$$(0010 1011)_2 =$$

 $(2 B)_{16}$

Register Addressing Mode

MOV Rn, A ;n=0,...,7 ADD A, Rn MOV DPL, R6

MOV DPTR, A

MOV Rm. Rn

Tuesday, April 16, 2019

Direct Addressing Mode

Although the entire of 128 bytes of RAM can be accessed using direct addressing mode, it is most often used to access RAM loc. 30 - 7FH.

```
MOV R0, 40H
MOV 56H, A
MOV A, 4
MOV 6, 2
```

- ; \equiv MOV A, R4
- ; copy R2 to R6
- ; MOV R6,R2 is invalid !

Immediate Addressing Mode

MOV A,#65H

MOV R6,#65H

MOV DPTR,#2343H

MOV P1,#65H

Tuesday, April 16, 2019

<u>SETB bit</u>		; bit=1	
CLR	bit	; bit=0	
SETB	С	; CY=1	
SETB	P0.0	; bit 0 from port $0 = 1$	
SETB	P3.7	; bit 7 from port $3 = 1$	
SETB	ACC.2	;bit 2 from ACCUMULATOR =1	
SETB	05	;set high D5 of RAM loc. 20h	

Note:

CLR instruction is as same as SETB i.e.:

CLR C ;CY=0

But following instruction is only for CLR: CLR A ;A=0

DEC	byte	;byte=byte-1
INC	byte	;byte=byte+1

INC R7 DEC A DEC 40H ; [40]=[40]-1

LOOP and JUMP Instructions

Conditional Jumps :

JZ	Jump if A=0
JNZ	Jump if A/=0
DJNZ	Decrement and jump if A/=0
CJNE A,byte	Jump if A/=byte
CJNE reg,#data	Jump if byte/=#data
JC	Jump if CY=1
JNC	Jump if CY=0
JB	Jump if bit=1
JNB	Jump if bit=0
JBC	Jump if bit=1 and clear bit

Call instruction

SETB P0.0

CALL UP

UP:CLR P0.0

٠

٠

٠

٠

٠

٠

RET

Tuesday, April 16, 2019

Thank You