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Definition of Stress 

 

Consider a small area δA on the surface of a body (Fig. 1.1). The force acting on this area is δF 
This force can be resolved into two perpendicular components 

The component of force acting normal to the area called normal force and is denoted by δFn

The component of force acting along the plane of area is called tangential force and is 

denoted by δFt 

 

 

 

 

 

 

 

 

 

Fig 1.1 Normal and Tangential Forces on a surface 

When they are expressed as force per unit area they are called as normal stress and 
tangential stress respectively. The tangential stress is alsocalled shear stress 

The normal stress 

 

 

 

And shear stress 
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Definition of Fluid 

 

 A fluid is a substance that deforms continuously in the face of tangential or shear
stress, irrespective of the magnitude of shear stress .This continuous deformation under the 
application of shear stress constitutes a flow .In this connection fluid can also be defined as 
the state of matter that cannot sustain any shear stress. 

 

Example : Consider Fig 1.2 

 

 

 

 

 

 

 

 

 

 

Fig 1.2 Shear stress on a fluid body 

If a shear stress τ is applied at any location in a fluid, the element 011' which is initially at rest, will 
move to 022', then to 033'. Further, it moves to 044' and continues to move in a similar fashion. 

In other words, the tangential stress in a fluid body depends on velocity of deformation and 

vanishes as this velocity approaches zero. A good example isNewton'sparallel plate experiment 

where dependence of shear force on the velocity of deformation was established. 

 

 

 

 

 

 

http://www.nptel.ac.in/courses/112104118/lecture-1/hyperlink/1-9-newton-parallel-plate.htm
http://www.nptel.ac.in/courses/112104118/lecture-1/hyperlink/1-9-newton-parallel-plate.htm
http://www.nptel.ac.in/courses/112104118/lecture-1/hyperlink/1-9-newton-parallel-plate.htm
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Distinction Between Solid and Fluid 
 
 
 

         

Solid  

Fluid  

  

More Compact Structure 

    

Less Compact Structure 

 

       

  

Attractive Forces between the 

    

Attractive Forces between the 
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molecules 

 

are larger therefore more closely 
packed 

 

 

 Solids can resist tangential stresses 
in static condition



 Whenever a solid is subjected 
to shear stress

 It undergoes a definite 

deformationα or breaks  

 α is proportional to 
shear stress upto some 
limiting condition 

 

 Solid may regain partly or fully its 
original shape when the tangential 
stress is removed 

 

molecules 

 

are smaller therefore more 
loosely packed 

 

 

 Fluids cannot resist tangential 

stresses in static condition.



 Whenever a fluid is subjected to 
shear stress



 No fixed deformation  

 Continious deformation takes 
place  

until the shear stress is applied 

 

 A fluid can never regain its original 
shape, once it has been distorded by 
the shear stress 
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        Fluid Properties : 

          Characteristics of a continuous fluid which are independent of the motion of the fluid are    
called basic properties of the fluid. Some of the basic properties are as discussed below. 

 

Viscosity ( μ ) : 

Viscosity is a fluid property whose effect is understood when the fluid is in motion. In a flow of 

fluid, when the fluid elements move with different velocities, each element will feel some resistance 

due to fluid friction within the elements. Therefore, shear stresses can be identified between the fluid 

elements with different velocities.The relationship between the shear stress and the velocity field 

was given by Sir Isaac Newton. Consider a flow (Fig. 1.5) in which all fluid particles are moving in 

the same direction in such a way that the fluid layers move parallel with different velocities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1.6 Two adjacent layers of a moving 

 

Fig 1.5 Parallel flow of a fluid 

fluid.  
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The upper layer, which is moving faster, tries to draw the lower slowly moving layer along 

with it by means of a force F along the direction of flow on this layer. Similarly, the lower 
layer tries to retard the upper one, according to Newton's third law, with an equal and 

opposite force F on it (Figure 1.6).
Such a fluid flow where x-direction velocities, for example, change with y-coordinate is called 
shear flow of the fluid.
Thus, the dragging effect of one layer on the other is experienced by a tangential force F 
on the respective layers. If F acts over an area of contact A, then the shear stress τ is 
defined as   
                                                               = F/A
Viscosity ( μ ) : 

Newton postulated that τ is proportional to the quantity Δu/ Δy where Δy is the distance of 

separation of the two layers and Δu is the difference in their velocities. 
In the limiting case of , Δu / Δy equals du/dy, the velocity gradient at a point in a 
direction perpendicular to the direction of the motion of the layer.
According to Newton τ and du/dy bears the relation 

                

where, the constant of proportionality μ is known as the coefficient of viscosity or simply 

viscosity which is a property of the fluid and depends on its state. Sign of τdepends upon the sign 

of du/dy. For the profile shown in Fig. 1.5, du/dy is positive everywhere and hence, τ is positive. 

Both the velocity and stress are considered positive in the positive direction of the coordinate 

parallel to them. 

Equation 

 

 

 

defining the viscosity of a fluid, is known as Newton's law of viscosity. Common fluids, viz. 

water, air, mercury obey Newton's law of viscosity and are known asNewtonian fluids.Other 

classes of fluids, viz. paints, different polymer solution, blood do not obey the typical linear 

relationship, of τ and du/dy and are known as non-Newtonian fluids.  

In non-newtonian fluids viscosity itself may be a function of deformation rate as you will study 

in the next lecture. 

http://www.nptel.ac.in/courses/112104118/lecture-1/hyperlink/1-9a-newton-parallel-plate.htm
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Causes of Viscosity 

The causes of viscosity in a fluid are possibly attributed to two factors:
intermolecular force of cohesionmolecular momentum exchange 

Due to strong cohesive forces between the molecules, any layer in a moving fluid tries to drag 

the adjacent layer to move with an equal speed and thus produces the effect of viscosity as 
discussed earlier. Since cohesion decreases with temperature, the liquid viscosity does likewise. 

 

 

 

 

 

 

 

 

Fig 1.7 Movement of fluid molecules between two adjacent moving layers 

 

 

Molecules from layer aa in course of continous thermal agitation migrate into layer bb
Momentum from the migrant molecules from layer aa is stored by molecules of layer bb by 
way of collisionThus layer bb as a whole is speeded up
Molecules from the lower layer bb arrive at aa and tend to retard the layer aa
Every such migration of molecules causes forces of acceleration or deceleration to drag the 
layers so as to oppose the differences in velocity between the layers and produce the effect of 
viscosity. 

Causes of Viscosity - contd from previous slide... 
 As the random molecular motion increases with a rise in temperature, the viscosity also 

increases accordingly. Except for very special cases (e.g., at very high pressure) the 

viscosity of both liquids and gases ceases to be a function of pressure.

 For Newtonian fluids, the coefficient of viscosity depends strongly on temperature but 
varies very little with pressure.For liquids, molecular motion is less significant than the 

forces of cohesion, thus viscosity of liquids decrease with increase in temperature.For 
gases,molecular motion is more significant than the cohesive forces, thus viscosity of 

gases increase with increase in temperature.
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 Fig 1.8: Change of Viscosity of Water and Air under 1 atm 

 

No-slip Condition of Viscous Fluids 

It has been established through experimental observations that the relative velocity between the 

solid surface and the adjacent fluid particles is zero whenever a viscous fluid flows over a solid 
surface. This is known as no-slip condition 

 This behavior of no-slip at the solid surface is not same as the wetting of surfaces by the fluids. 
For example, mercury flowing in a stationary glass tube will not wet the surface, but will have 

zero velocity at the wall of the tube.
The wetting property results from surface tension, whereas the no-slip condition is a 
consequence of fluid viscosity 

Ideal Fluid 

Consider a hypothetical fluid having a zero viscosity ( μ = 0). Such a fluid is called an ideal fluid 

and the resulting motion is called as ideal or inviscid flow. In an ideal flow, there is no 

existence of shear force because of vanishing viscosity. 







All the fluids in reality have viscosity (μ > 0) and hence they are termed as real fluid and 
their motion is known as viscous flow.Under certain situations of very high velocity flow of 
viscous fluids, an accurate analysis of flow field away from a solid surface can be made from 
the ideal flow theory. 

Non-Newtonian Fluids 

There are certain fluids where the linear relationship between the shear stress and the

deformation rate (velocity gradient in parallel flow) as expressed by the  is not valid. 

For these fluids the viscosity varies with rate of deformation.Due to the deviation from 

Newton's law of viscosity they are commonly termed as non-Newtonian fluids. Figure 2.1 

shows the class of fluid for which this relationship is nonlinear. 
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Figure 2.1 Shear stress and deformation rate relationship of different fluids 

 The abscissa in Fig. 2.1 represents the behaviour of ideal fluids since for the ideal 
fluids the resistance to shearing deformation rate is always zero, and hence they exhibit 

zero shear stress under any condition of flow.The ordinate represents the ideal solid for 
there is no deformation rate under any loading condition.The Newtonian fluids behave 
according to the law that shear stress is linearlyproportional to velocity gradient or rate 

of shear strain . Thus for these fluids, the plot of shear stress against 
velocity gradient is a straight line through the origin. The slope of the line determines 
the viscosity.The non-Newtonian fluids are further classified as pseudo-plastic, dilatant 
and Bingham plastic. 

Compressibility

Compressibility of any substance is the measure of its change in volume under the action of 

external forces.The normal compressive stress on any fluid element at rest is known as hydrostatic 

pressure p and arises as a result of innumerable molecular collisions in the entire fluid. 

The degree of compressibility of a substance is characterized by the bulk modulus of 
elasticity E defined as 

 

 

(2.3) 

Where  and Δp are the changes in the volume and pressure respectively, and  is the initial 

volume. The negative sign (-sign) is included to make E positive, since increase inpressure would 

http://www.nptel.ac.in/courses/112104118/lecture-2/hyperlink/2-3-classification-non-newtonian.htm
http://www.nptel.ac.in/courses/112104118/lecture-2/hyperlink/2-3-classification-non-newtonian.htm
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decrease the volume i.e for Δp>0 ,   <0) in volume.For a given mass of a substance, the change 

in its volume and density satisfies the relation

= 0, ρ  ) = 0 

 

 

(2.4) 

 

using 

 

we get 

 

 

 

(2.5) 

Values of E for liquids are very high as compared with those of gases (except at very high 

pressures). Therefore, liquids are usually termed as incompressible fluids though, in

fact, no substance is theoretically incompressible with a value of E as  . 

For example, the bulk modulus of elasticity for water and air at atmospheric pressure are 

approximately 2 x 10
6
 kN/m 

2
 and 101 kN/m 

2
 respectively. It indicates that air is about 20,000 

times more compressible than water. Hence water can be treated as incompressible.
For gases another characteristic parameter, known as compressibility K, is usually 
defined , it is the reciprocal of E 
 

 

 (2.6) 

 K is often expressed in terms of specific volume .

 For any gaseous substance, a change in pressure is generally associated with a change in 
volume and a change in temperature simultaneously. A functional relationship between 

the pressure, volume and temperature at any equilibrium state is known as 

thermodynamic equation of state for the gas.
         For an ideal gas, the thermodynamic equation of state is given by 

p = ρRT  

where T is the temperature in absolute thermodynamic or gas temperature scale (which are, in 

fact, identical), and R is known as the characteristic gas constant, the value of which depends 
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upon a particular gas. However, this equation is also valid for the real gases which are 

thermodynamically far from their liquid phase. For air, the value of R is 287 J/kg K.

K and E generally depend on the nature of process 

Distinction between an Incompressible and a Compressible Flow 

 
 
 
In order to know, if it is necessary to take into account the compressibility of gases in fluid 
flow problems, we need to consider whether the change in pressure brought about by the fluid 
motion causes large change in volume or density.
Using Bernoulli's equation 

p + (1/2)ρV2
= constant (V being the velocity of flow), change in pressure, Δp, in a flow field, 

is of the order of (1/2)ρV2
 (dynamic head). 

Invoking this relationship into 





 we get , 

 

 

So if Δρ/ρ is very small, the flow of gases can be treated as incompressible with a good 
degree of approximation.

According to Laplace's equation, the velocity of sound is given  

 



where, Ma is the ratio of the velocity of flow to the acoustic velocity in the flowing 
medium at the condition and is known as Mach number. So we can conclude that 
the compressibility of gas in a flow can be neglected if Δρ/ρ is considerably smaller 
than unity, i.e. (1/2)Ma

2
<<1. 

In other words, if the flow velocity is small as compared to the local acoustic velocity, 

compressibility of gases can be neglected. Considering a maximum relative change 

in density of 5 per cent as the criterion of an incompressible flow, the upper limit 

of Mach number becomes approximately 0.33. In the case of air at standard pressure 

and temperature, the acoustic velocity is about 335.28 m/s. Hence a Mach number of 

0.33 corresponds to a velocity of about 110 m/s. Therefore flow of air up to a velocity 

of 110 m/s under standard condition can be considered as incompressible flow.


 

http://www.nptel.ac.in/courses/112104118/lecture-2/hyperlink/2-5-process.htm
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Surface Tension of Liquids 

The phenomenon of surface tension arises due to the two kinds of intermolecular forces
Cohesion :  
The force of attraction between the molecules of a liquid by virtue of which they are bound to 
each other to remain as one assemblage of particles is known as the force of cohesion. This 
property enables the liquid to resist tensile stress. 

Adhesion : 
 The force of attraction between unlike molecules, i.e. between the molecules of different 
liquids or between the molecules of a liquid and those of a solid body when they are in contact 

with each other, is known as the force of adhesion. This force enables two different liquids to 

adhere to each other or a liquid to adhere to a solid body or surface. 
     A and B experience equal force of cohesion in all directions, C experiences a net force 
interior of the liquid The net force is maximum for D since it is at surface 

Work is done on each molecule arriving at surface against the action of an inward force. Thus 

mechanical work is performed in creating a free surface or in increasing the area of the surface. 

Therefore, a surface requires mechanical energy for its formation and the existence of a free 

surface implies the presence of stored mechanical energy known as free surface energy. Any 

system tries to attain the condition of stable equilibrium with its potential energy as minimum. 

Thus a quantity of liquid will adjust its shape until its surface area and consequently its free 

surface energy is a minimum.
The magnitude of surface tension is defined as the tensile force acting across imaginary short 
and straight elemental line divided by the length of the line.

The dimensional formula is F/L or MT
-2

 . It is usually expressed in N/m in SI units.
Surface tension is a binary property of the liquid and gas or two liquids which are in contact with 

each other and defines the interface. It decreases slightly with increasing temperature. The surface 

tension of water in contact with air at 20°C is about 0.073 N/m.

It is due to surface tension that a curved liquid interface in equilibrium results in a greater 
pressure at the concave side of the surface than that at its convex side. 

Capillarity 

The interplay of the forces of cohesion and adhesion explains the phenomenon of capillarity. 

When a liquid is in  contact with a solid, if the forces of adhesion between the molecules of the 

liquid and the solid are greater than the forces of cohesion among the liquid molecules 

themselves, the liquid molecules crowd towards the solid surface. The area of contact between 

the liquid and solid increases and the liquid thus wets the solid surface. The reverse phenomenon 

takes place when the force of cohesion is greater than the force of adhesion. These adhesion and 

cohesion properties result in the phenomenon of capillarity by which a liquid either rises or falls in a 

tube dipped into the liquid depending upon whether the force of adhesion is more than that of 

cohesion or not (Fig.2.4) The angle θ as shown in Fig. 2.4, is the area wetting contact angle made 

by the interface with the solid surface.
 

 

 

http://www.nptel.ac.in/courses/112104118/lecture-2/hyperlink/2-8-surface-tension-greater_pressure.htm
http://www.nptel.ac.in/courses/112104118/lecture-2/hyperlink/2-8-surface-tension-greater_pressure.htm
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Fig 2.4 Phenomenon of Capillarity 

For pure water in contact with air in a clean glass tube, the capillary rise takes place with

θ = 0 . Mercury causes capillary depression with an angle of contact of about 1300
 in a clean 

glass in contact with air. Since h varies inversely with D as found from Eq. 
 

( ), an appreciable capillary rise or depression is observed in tubes of small 

diameter only 

Normal Stress in a Stationary Fluid 

Consider a stationary fluid element of tetrahedral shape with three of its faces coinciding with 

the coordinate planes x, y and z. 
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Fig 3.1 State of Stress in a Fluid Element at Rest 

Since a fluid element at rest can develop neither shear stress nor tensile stress, the 
normal stresses acting on different faces are compressive in nature. 

Suppose, ΣFx, ΣFy and ΣFz are the net forces acting on the fluid element in positive x,y and 

z directions respectively. The direction cosines of the normal to the inclined plane of an area 

ΔA are cos α, cos β and cos .Considering gravity as the only source of external body force, 

acting in the -ve z direction, the equations of static equlibrium for the tetrahedronal fluid 

element can be written as 

 

 

 

(3.1) 

 

(3.2) 

(3.3) 

where   = Volume of tetrahedral fluid element 

Pascal's Law of Hydrostatics 

Pascal's Law 

The normal stresses at any point in a fluid element at rest are directed towards the point from 
all directions and they are of the equal magnitude. 

 

 

 

 

 

 

 

              

                       Fig 3.2 State of normal stress at a point in a fluid body at rest 
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Derivation: 

 

The inclined plane area is related to the fluid elements (refer to Fig 3.1) as follows 

 

 

Substituting above values in equation 3.1- 3.3 we get 

 
 

Conclusion: 

The state of normal stress at any point in a fluid element at rest is same and directed towards 
the point from all directions. These stresses are denoted by a scalar quantity p defined as the 
hydrostatic or thermodynamic pressure. 

Using "+" sign for the tensile stress the above equation can be written in terms of pressure as 

 
 

 

Units and scales of Pressure Measurement 

Pascal (N/m
2
) is the unit of pressure . 

Pressure is usually expressed with reference to either absolute zero pressure (a 
complete vacuum)or local atmospheric pressure. 

The absolute pressure: It is the difference between the value of the pressure and the 
absolute zero pressure.

Gauge pressure: It is the diference between the value of the pressure and the local 

atmospheric pressure(patm)










Vacuum Pressure: If p<patm then the gauge pressure  becomes negative and is called 

the vacuum pressure.But one should always remember that hydrostatic pressure is always 

compressive in nature
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    The Scale of Pressure 
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At sea-level, the international standard atmosphere has been chosen as Patm = 101.32 kN/m
2 

Hydrostatic Thrusts on Submerged Plane Surface 

Due to the existence of hydrostatic pressure in a fluid mass, a normal force is exerted on any 
part of a solid surface which is in contact with a fluid. The individual forces distributed over an 
area give rise to a resultant force. 

Plane Surfaces 

Consider a plane surface of arbitrary shape wholly submerged in a liquid so that the plane of 

the surface makes an angle θ with the free surface of the liquid. We will assume the case where 
the surface shown in the figure below is subjected to hydrostatic pressure on one side and 

atmospheric pressure on the other side. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5.1 Hydrostatic Thrust on Submerged Inclined Plane Surface 

Let p denotes the gauge pressure on an elemental area dA. The resultant force F on the area A 
is therefore 

 

 

 

(5.1) 
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According to Eq (3.16a) Eq (5.1) reduces to 

 

 

 

Where h is the vertical depth of the elemental area dA from the free surface and the distance 
y is measured from the x-axis, the line of intersection between the extension of the inclined plane 
and the free surface (Fig. 5.1). The ordinate of the centre of area of the plane surface A is 
defined as 

 

 

Hence from Eqs (5.2) and (5.3), we get 

 

 

 

where  is the vertical depth (from free surface) of centre c of area . 

Equation (5.4) implies that the hydrostatic thrust on an inclined plane is equal to the pressure at 
its centroid times the total area of the surface, i.e., the force that would have been experienced 

by the surface if placed horizontally at a depth hc from the free surface (Fig. 5.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

            Fig 5.2 Hydrostatic Thrust on Submerged Horizontal Plane Surface 
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The point of action of the resultant force on the plane surface is called the centre of pressure . 

Let  and  be the distances of the centre of pressure from the y and x axes respectively. 

Equating the moment of the resultant force about the x axis to the summation of the moments 

of the component forces, we have 

 

 

(5.5) 

 

Solving for yp from Eq. (5.5) and replacing F from Eq. (5.2), we can write 

 

 

 

 

5.6) 

 

In the same manner, the x coordinate of the centre of pressure can be obtained by taking 
moment about the y-axis. Therefore, 
 

 

 

From which, 

 

 

 

 

(5.7) 

 

The two double integrals in the numerators of Eqs (5.6) and (5.7) are the moment of inertia about 

the x-axis Ixxand the product of inertia Ixy about x and y axis of the plane area respectively. By 
applying the theorem of parallel axis 
 

(5.8) 

 

 

(5.9) 
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where,  and  are the moment of inertia and the product of inertia of the surface about 

the centroidal axes , and  are the coordinates of the center c of the area with 

respect to x-y axes.With the help of Eqs (5.8), (5.9) and (5.3), Eqs (5.6) and (5.7) can be written 

as 

 

 

(5.10a) 

 

The first term on the right hand side of the Eq. (5.10a) is always positive. Hence, the centre of 

pressure is always at a higher depth from the free surface than that at which the centre of area lies. 

This is obvious because of the typical variation of hydrostatic pressure with the depth from the free 

surface. When the plane area is symmetrical about the y' axis, , and  

Hydrostatic Thrusts on Submerged Curved Surfaces 

On a curved surface, the direction of the normal changes from point to point, and hence the 

pressure forces on individual elemental surfaces differ in their directions. Therefore, a scalar 

summation of them cannot be made. Instead, the resultant thrusts in certain directions are to be 

determined and these forces may then be combined vector ally. An arbitrary submerged curved 

surface is shown in Fig. 5.3. A rectangular Cartesian coordinate system is introduced whose xy 

plane coincides with the free surface of the liquid and z-axis is directed downward below the x - 

y plane. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                      Fig 5.3 Hydrostatic thrust on a Submerged Curved Surface 
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Consider an elemental area dA at a depth z from the surface of the liquid. The hydrostatic force 
on the elemental area dA is                                                                        

and the force acts in a direction normal to the area dA. The components of the force dF in x, 
y and z directions are 
 

(5.12a) 

 

 

(5.12b) 

 

 

(5.13c) 

Where l, m and n are the direction cosines of the normal to dA. The components of the surface 
element dA projected on yz, xz and xy planes are, respectively 

 
 

Substituting Eqs (5.13a-5.13c) into (5.12) we can write 

 

 

 

 

 

Therefore, the components of the total hydrostatic force along the coordinate axes are 

 

 

(5.15a) 

(5.15b) 

 

(5.15c) 

where zc is the z coordinate of the centroid of area Ax and Ay (the projected areas of curved 

surface on yz and xz plane respectively). If zp and yp are taken to be the coordinates of the 

point of action of Fx on the projected area Ax on yz plane, , we can write 
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where Iyy is the moment of inertia of area Ax about y-axis and Iyz is the product of inertia of 

Ax with respect to axes y and z. In the similar fashion, zp
'
 and x p

'
 the coordinates of the point 

of action of the force Fy on area Ay, can be written as 

where Ixx is the moment of inertia of area Ay about x axis and Ixz is the product of inertia 

of Ay about the axes x and z.We can conclude from Eqs (5.15), (5.16) and (5.17) that for a 
curved surface, the component of hydrostatic force in a horizontal direction is equal to the 
hydrostatic force on the projected plane surface perpendicular to that direction and acts 
through the centre of pressure of the projected area. From Eq. (5.15c), the vertical 
component of the hydrostatic force on the curved surface can be written as 

(5.18) 

 

where  is the volume of the body of liquid within the region extending vertically above the 
submerged surface to the free surfgace of the liquid. Therefore, the vertical component of 

hydrostatic force on a submerged curved surface is equal to the weight of the liquid volume 
vertically above the solid surface of the liquid and acts through the center of gravity of the 

liquid in that volume. 

Piezometer Tube 

The direct proportional relation between gauge pressure and the height h for a fluid of constant 

density enables the pressure to be simply visualized in terms of the vertical height, . 

The height h is termed as pressure head corresponding to pressure p. For a liquid without a free 

surface in a closed pipe, the pressure head  at a point corresponds to the vertical height 

above the point to which a free surface would rise, if a small tube of sufficient length and open to 

atmosphere is connected to the pipe 

Such a tube is called a piezometer tube, and the height h is the measure of the gauge pressure of 
the fluid in the pipe. If such a piezometer tube of sufficient length were closed at the top and the 
space above the liquid surface were a perfect vacuum, the height of the column would then  
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                                                                  Fig 4.3 A Simple Barometer 

correspond to the absolute pressure of the liquid at the base. This principle is used in the well 
known mercury barometer to determine the local atmospheric pressure. 

The Barometer 

Barometer is used to determine the local atmospheric pressure. Mercury is employed in the 
barometer because its density is sufficiently high for a relative short column to be obtained. 

and also because it has very small vapour pressure at normal temperature. High density scales 
down the pressure head(h) to repesent same magnitude of pressure in a tube of smaller height. 

A Simple Barometer 

Even if the air is completely absent, a perfect vacuum at the top of the tube is never possible. 
The space would be occupied by the mercury vapour and the pressure would equal to the vapour 

pressure of mercury at its existing temperature. This almost vacuum condition above the 

mercury in the barometer is known as Torricellian vacuum.The pressure at A equal to that at B 

(Fig. 4.3) which is the atmospheric pressure patm since A and B lie on the same horizontal plane. 

Therefore, we can write 

 

 

 

The vapour pressure of mercury pv, can normally be neglected in comparison to patm. 

At 20
0
C,Pv is only 0.16 patm, where patm =1.0132 X10

5
 Pa at sea level. Then we get from 

Eq. (4.1) 
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For accuracy, small corrections are necessary to allow for the variation of 

 the thermal expansion of the scale (usually made of brass). and surface 

tension effects. If water was used instead of mercury, the corresponding height of the column 

would be about 10.4 m provided that a perfect vacuum could be achieved above the water. 

However, the vapour pressure of water at ordinary temperature is appreciable and so the actual 

height at, say, 15°C would be about 180 mm less than this value. Moreover. with a tube smaller 

in diameter than about 15 mm, surface tension effects become significant. 

Manometers for measuring Gauge and Vacuum Pressure 
 

Manometers are devices in which columns of a suitable liquid are used to measure the difference 
in pressure between two points or between a certain point and the atmosphere.Manometer is 
needed for measuring large gauge pressures. It is basically the modified form of the piezometric 
tube. A common type manometer is like a transparent "U-tube" as shown in Fig. 4.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.4 A simple manometer to measure 
gauge pressure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.5 A simple manometer to measure 
vacuum pressure 
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One of the ends is connected to a pipe or a container having a fluid (A) whose pressure is to be 
measured while the other end is open to atmosphere. The lower part of the U-tube contains a 
liquid immiscible with the fluid A and is of greater density than that of A. This fluid is called 
the manometric fluid. 

The pressures at two points P and Q (Fig. 4.4) in a horizontal plane within the continuous 

expanse of same fluid (the liquid B in this case) must be equal. Then equating the pressures 

at P and Q in terms of the heights of the fluids above those points, with the aid of the 
fundamental equation of hydrostatics (Eq 3.16), we have 

 

 

Hence, 

 

where p1 is the absolute pressure of the fluid A in the pipe or container at its centre line, and patm 

is the local atmospheric pressure. When the pressure of the fluid in the container is lower than 

the atmospheric pressure, the liquid levels in the manometer would be adjusted as shown in Fig. 

4.5.  

Manometers to measure Pressure Difference 

A manometer is also frequently used to measure the pressure difference, in course of flow, 
across a restriction in a horizontal pipe. 

 

 

 

 

 

 

 

 

 

 

 

 

                                       Fig 4.6 Manometer measuring pressure difference 
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The axis of each connecting tube at A and B should be perpendicular to the direction of flow 
and also for the edges of the connections to be smooth. Applying the principle of hydrostatics at 
P and Q we have, 

 

 

 

 

where, ρ m is the density of manometric fluid and ρw is the density of the working fluid 

flowing through the pipe.We can express the difference of pressure in terms of the difference 

of heads (height of the working fluid at equilibrium). 

                       (4.4) 

Inclined Tube Manometer 

For accurate measurement of small pressure differences by an ordinary u-tube manometer, it is 

essential that the ratio m w should be close to unity. This is not possible if the working fluid is a 

gas; also having a manometric liquid of density very close to that of the working liquid and 

giving at the same time a well defined meniscus at the interface is not always possible. For this 

purpose, an inclined tube manometer is used. 

 

If the transparent tube of a manometer, instead of being vertical, is set at an angle θ to the 
horizontal (Fig. 4.7), then a pressure difference corresponding to a vertical difference of

         along the slope. 
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                        Fig 4.7 An Inclined Tube Manometer 

If θ is small, a considerable magnifications of the movement of the meniscus may be 
achieved. Angles less than 5

0
 are not usually satisfactory, because it becomes difficult to 

determine the exact position of the meniscus.
One limb is usually made very much greater in cross-section than the other. When a pressure 
difference is applied across the manometer, the movement of the liquid surface in the wider limb 

is practically negligible compared to that occurring in the narrower limb. If the level of the 
surface in the wider limb is assumed constant, the displacement of the meniscus in the narrower 

limb needs only to be measured, and therefore only this limb is required to be transparent.
 

Inverted Tube Manometer 

For the measurement of small pressure differences in liquids, an inverted U-tube manometer 

is usedHere  and the line PQ is taken at the level of the higher meniscus to equate 
the pressures at P and Q from the principle of hydrostatics. It may be written that 

 

where  represents the piezometric pressure,  (z being the vertical height of the point 

concerned from any reference datum). In case of a horizontal pipe (z1= z2) the difference 

inpiezometric pressure becomes equal to the difference in the static pressure. If  

issufficiently small, a large value of x may be obtained for a small value of . Air is used 

asthe manometric fluid. Therefore,  is negligible compared with  and hence, 

(4.5) 

 

Air may be pumped through a valve V at the top of the manometer until the liquid menisci are 
at a suitable level. 
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Micromanometer 

When an additional gauge liquid is used in a U-tube manometer, a large difference in 
meniscus levels may be obtained for a very small pressure difference. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                    Fig 4.9 A Micromanometer 

 

The equation of hydrostatic equilibrium at PQ can be written as 

 

 

 

where  are the densities of working fluid, gauge liquid and manometric 

liquid respectively.From continuity of gauge liquid, 

 

 

(4.6) 
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(4.7) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                     Fig 5.4 Buoyant Force on a Submerged Body 
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If a is very small compared to A 

With a suitable choice for the manometric and gauge liquids so that their densities are 

Close a reasonable value of y may be achieved for a small pressure difference. 

Buoyancy 

When a body is either wholly or partially immersed in a fluid, a lift is generated due to the net 
vertical component of hydrostatic pressure forces experienced by the body.This lift is called 
the buoyant force and the phenomenon is called buoyancyConsider a solid body of arbitrary 
shape completely submerged in a homogeneous liquid as shown in Fig. 5.4. Hydrostatic 
pressure forces act on the entire surface of the body.
To calculate the vertical component of the resultant hydrostatic force, the body is considered to 
be divided into a number of elementary vertical prisms. The vertical forces acting on the two 

ends of such a prism of cross-section dAz (Fig. 5.4) are respectively 

 

 
 

Therefore, the buoyant force (the net vertically upward force) acting on the elemental prism of 

volume  is - 

 

 

 

Hence the buoyant force FB on the entire submerged body is obtained as 

 

 

Where  is the total volume of the submerged body. The line of action of the force FB can 

be found by taking moment of the force with respect to z-axis. Thus 

(5.21) 

 

Substituting for dFB and FB from Eqs (5.19c) and (5.20) respectively into Eq. (5.21), the 

x coordinate of the center of the buoyancy is obtained as 
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(5.22) 

 

which is the centroid of the displaced volume. It is found from Eq. (5.20) that the buoyant 

force FB equals to the weight of liquid displaced by the submerged body of volume . This 
phenomenon was discovered by Archimedes and is known as the Archimedes principle. 

ARCHIMEDES PRINCIPLE 

The buoyant force on a submerged body 

The Archimedes principle states that the buoyant force on a submerged body is equal to the 
weight of liquid displaced by the body, and acts vertically upward through the centroid of the 

displaced volume.Thus the net weight of the submerged body, (the net vertical downward 
force experienced by it) is reduced from its actual weight by an amount that equals the buoyant 
force.
The buoyant force on a partially immersed body 

According to Archimedes principle, the buoyant force of a partially immersed body is equal 
to the weight of the displaced liquid.

Therefore the buoyant force depends upon the density of the fluid and the submerged 
volume of the body.

For a floating body in static equilibrium and in the absence of any other external force, the 
buoyant force must balance the weight of the body.
KINEMATICS OF FLUID 

Introduction 

Kinematics is the geometry of Motion. 

Kinematics of fluid describes the fluid motion and its consequences without consideration of the 
nature of forces causing the motion. 

The subject has three main aspects: 
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Scalar and Vector Fields 

Scalar: Scalar is a quantity which can be expressed by a single number 
representing its magnitude Example: mass, density and temperature 

Scalar Field 
 

If at every point in a region, a scalar function has a defined value, the region is called a scalar 
field.Example:  Temperature distribution in a rod. 

Vector: Vector is a quantity which is specified by both magnitude and direction. 

Example: Force, Velocity and Displacement. 

Vector Field 

If at every point in a region, a vector function has a defined value, the region is called a 
vector field. 

Example: velocity field of a flowing fluid . 

 

Flow Field 

The region in which the flow parameters i.e. velocity, pressure etc. are defined at each 
and every point at any instant of time is called a flow field. 

Thus a flow field would be specified by the velocities at different points in the region 
at different times. 

Variation of Flow Parameters in Time and Space 

Hydrodynamic parameters like pressure and density along with flow velocity may vary from one 
point to another and also from one instant to another at a fixed point. 

According to type of variations, categorizing the flow: 

Steady and Unsteady Flow 

Steady Flow


A steady flow is defined as a flow in which the various hydrodynamic parameters 
and fluid properties at any point do not change with time. 

In Eulerian approach, a steady flow is described as, 

                                   and 
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Implications: Velocity and acceleration are functions of space coordinates only.In a steady flow, 

the hydrodynamic parameters may vary with location, but the spatial distribution of these 

parameters remain invariant with time. In the Lagrangian approach,Time is inherent in 

describing the trajectory of any particle. In steady flow, the velocities of all particles passing 

through any fixed point at different times will be same. Describing velocity as a function of time 

for a given particle will show the velocities at different points through which the particle has 

passed providing the information of velocity as a function of spatial location as described by 

Eulerian method. Therefore, the Euclidian and Lagrangian approaches of describing fluid 

motion become identical under this situation. 

Unsteady Flow 

An unsteady Flow is defined as a flow in which the hydrodynamic parameters and fluid 

properties changes with time. 

Uniform and Non-uniform Flows 

Uniform Flow
The flow is defined as uniform flow when in the flow field the velocity and other 

hydrodynamic parameters do not change from point to point at any instant of time. 

For a uniform flow, the velocity is a function of time only, which can be expressed in 
Eulerian description as 

Implication: 

For a uniform flow, there will be no spatial distribution of hydrodynamic and other 
parameters. 

Any hydrodynamic parameter will have a unique value in the entire field, 
irrespective of whether it changes with time − unsteady uniform flow
 OR 

does not change with time − steady uniform flow. 

 Thus ,steadiness of flow and uniformity of flow does not necessarily go together. 

Non-Uniform Flow

When the velocity and other hydrodynamic parameters changes from one point 
to another the flow is defined as non-uniform. 

Important points: 

 1.For a non-uniform flow, the changes with position may be found either in the 
direction of flow or in directions perpendicular to it. 

2.Non-uniformity in a direction perpendicular to the flow is always encountered near 
solid boundaries past which the fluid flows. 

Reason: All fluids possess viscosity which reduces the relative velocity (of the fluid w.r.t. to 
the wall) to zero at a solid boundary. This is known as no-slip condition. 
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Four possible combinations 
 

 

Type  Example 

    

   Flow at constant rate through a duct of uniform 

1. Steady Uniform flow  cross-section (The region close to the walls of the 

   duct is disregarded) 

    

   

Flow at constant rate through a duct of non- 

2. Steady non-uniform flow 

 

 

uniform cross-section (tapering pipe)    

    

   Flow at varying rates through a long straight pipe 

3. Unsteady Uniform flow  of uniform cross-section. (Again the region close 

   to the walls is ignored.) 

    

 Unsteady non-uniform flow Flow at varying rates through a duct of 
non-  uniform cross-section. 

 

Streamlines 

Definition: Streamlines are the Geometrical representation of the of the flow velocity. 

Description:In the Eulerian method, the velocity vector is defined as a function of time and 

space coordinates.If for a fixed instant of time, a space curve is drawn so that it is tangent 

everywhere to the velocity vector, then this curve is called a Streamline.Therefore, the 

Eulerian method gives a series of instantaneous streamlines of the state of motion (Fig. 7.2a).
 

 

 

 

 

                                             Fig 7.2a Streamlines 

 

 



36 

 

Alternative Definition: 

A streamline at any instant can be defined as an imaginary curve or line in the flow field so that 
the tangent to the curve at any point represents the direction of theinstantaneous velocity at that 
point. 

Comments: 

In an unsteady flow where the velocity vector changes with time, the pattern of 
streamlines also changes from instant to instant.

In a steady flow, the orientation or the pattern of streamlines will be fixed.
From the above definition of streamline, it can be written as 

 

 

 

Description of the terms: 

  is the length of an infinitesimal line segment along a streamline at a point . 

 is the instantaneous velocity vector. 

The above expression therefore represents the differential equation of a streamline. In a 
cartesian coordinate-system, representing 
 
 

 

             the above equation ( Equation 7.3 ) may be simplified as 

 

 

 

Stream tube: 

A bundle of neighboring streamlines may be imagined to form a passage through which the fluid 
flows. This passage is known as a stream-tube. 

 

 

 

 

 

 

                                                          Fig 7.2b Stream Tube 
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Properties of Stream tube: 

The stream-tube is bounded on all sides by streamlines.Fluid velocity does not exist across a 

streamline, no fluid may enter or leave a stream-tube except through its ends.The entire flow in a 

flow field may be imagined to be composed of flows through stream-tubes arranged in some 

arbitrary positions. 

Path Lines 
Definition: A path line is the trajectory of a fluid particle of fixed identity as defined by 

Eq. (6.1). 
 

 

 

 

 

 

 

 

                                                Fig 7.3 Path lines 

family of path lines represents the trajectories of different particles, say, P1, P 2, P3, 
etc. (Fig. 7.3). 
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Differences between Path Line and Stream Line 

 
     

 Path Line  Stream Line  

 

 This refers to a path followed by a 
fluid particle over a period of time.

 

 This is an imaginary curve in a flow 

field for a fixed instant of time, tangent 
to which gives the instantaneous 

velocity at that point .
 

 Two path lines can intersect each other as or a 

single path line can form a loop as different 
particles or even same particle can arrive at 

the same point at different instants of time.

 
Note: In a steady flow path lines are identical 

tostreamlines as the Eulerian and Lagrangian 

versionsbecome the same.

 

 Two stream lines can never intersect each 

other, as the instantaneous velocity vector 

at any given point is unique
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Streak Lines 

Definition: A streak line is the locus of the temporary locations of all particles that have 
passed though a fixed point in the flow field at any instant of time. 

Features of a Streak Line: 

While a path line refers to the identity of a fluid particle, a streak line is specified by a 
fixed point in the flow field.It is of particular interest in experimental flow visualization.
Example: If dye is injected into a liquid at a fixed point in the flow field, then at a later time 
t, the dye will indicate the end points of the path lines of particles which have passed through 
the injection point.
The equation of a streak line at time t can be derived by the Lagrangian method.If a fluid 

particle  passes through a fixed point  in course of time t, then the Lagrangian method 

of description gives the equation 

 

If the positions  of the particles which have passed through the fixed point  

are determined, then a streak line can be drawn through these points. 

Equation: The equation of the streak line at a time t is given by 

 

           

 

Substituting Eq. (7.5) into Eq. (7.6) we get the final form of equation of the streak line, 

 

 

 

One, Two and Three Dimensional Flows 

Fluid flow is three-dimensional in nature.
This means that the flow parameters like velocity, pressure and so on vary in all the three 
coordinate directions.Sometimes simplification is made in the analysis of different fluid 
flow problems by:Selecting the appropriate coordinate directions so that appreciable 
variation of the hydro dynamic parameters take place in only two directions or even in only 
one.

One-dimensional flow 

All the flow parameters may be expressed as functions of time and one space coordinate only.
The single space coordinate is usually the distance measured along the centre-line (not 
necessarily straight) in which the fluid is flowing.
Example: the flow in a pipe is considered one-dimensional when variations of pressure and 

velocity occur along the length of the pipe, but any variation over the cross-section is assumed 
negligible.In reality, flow is never one-dimensional because viscosity causes the velocity to 
decrease to zero at the solid boundaries.
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                   Fig 8.1 Fluid Element in pure translation 


If however, the non uniformity of the actual flow is not too great, valuable results may 
often be obtained from a "one dimensional analysis".
The average values of the flow parameters at any given section (perpendicular to the 

flow) are assumed to be applied to the entire flow at that section.

Two-dimensional flow 

All the flow parameters are functions of time and two space coordinates (say x and y).
No variation in z direction.The same streamline patterns are found in all planes perpendicular 

to z direction at any instant.

Three dimensional flow 

The hydrodynamic parameters are functions of three space coordinates and time.
Translation of a Fluid Element 

The movement of a fluid element in space has three distinct features simultaneously. 

Translation 

Rate of deformation 

Rotation.
Figure 7.4 shows the picture of a pure translation in absence of rotation and deformation of a 
fluid element in a two-dimensional flow described by a rectangular cartesian coordinate system. 

In absence of deformation and rotation, 

There will be no change in the length of the sides of the fluid element. 

There will be no change in the included angles made by the sides of the fluid element. 

The sides are displaced in parallel direction. 
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This is possible when the flow velocities u (the x component velocity) and v (the y 
component velocity) are neither a function of x nor of y, i.e., the flow field is 
totallyuniform.If a component of flow velocity becomes the function of only one space 
coordinate along which that velocity component is defined. 

For example, 

if u = u(x) and v = v(y), the fluid element ABCD suffers a change in its linear 
dimensions along with translation

there is no change in the included angle by the sides as shown in Fig. 7.5. 

 

 

 

 

 

 

 

  

       Fig 8.2 Fluid Element in Translation with Continuous Linear Deformation 

The relative displacement of point B with respect to point A per unit time in x direction is 

 

 

Similarly, the relative displacement of D with respect to A per unit time in y direction is 

 

 

 

Translation with Linear Deformations 

Observations from the figure: 

Since u is not a function of y and v is not a function of x 

All points on the linear element AD move with same velocity in the x direction. 

All points on the linear element AB move with the same velocity in y direction.
Hence the sides move parallel from their initial position without changing the included 

angle. This situation is referred to as translation with linear deformation. 
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Strain rate:
The changes in lengths along the coordinate axes per unit time per unit original lengths are defined 

as the components of linear deformation or strain rate in the respective directions. 

Therefore, linear strain rate component in the x direction 

 

 

and, linear strain rate component in y direction 

 

 

 

Rate of Deformation in the Fluid Element 

Let us consider both the velocity component u and v are functions of x and y, i.e., 

u = u(x,y) 

               v = v(x,y) 

Figure 8.3 represent the above condition 

Observations from the figure: Point B has a relative displacement in y direction with 

respect to the point A. Point D has a relative displacement in x direction with respect to 

point A. The included angle between AB and AD changes. The fluid element suffers a 

continuous angular deformation along with the linear deformations in course of its motion. 

Rate of Angular deformation: 

The rate of angular deformation is defined as the rate of change of angle between the linear 
segments AB and AD which were initially perpendicular to each other. 
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Fig 8.3 Fluid element in translation with simultaneous linear and angular deformation 
rates 

From the above figure rate of angular deformation, 

 

 

From the geometry 

(8.2a) 

 

 

(8.2b) 

 

 

Hence, 

 

 

 

(8.3) 

 

Finally 

 

Rotation 

Figure 8.3 represent the situation of rotation 

Observations from the figure: 

The transverse displacement of B with respect to A and the lateral displacement of D with 
respect to A (Fig. 8.3) can be considered as the rotations of the linear segments AB and 
AD about A.This brings the concept of rotation in a flow field.

Definition of rotation at a point:The rotation at a point is defined as the arithmetic mean 

of the angular velocities of two perpendicular linear segments meeting at that point. 

Example: The angular velocities of AB and AD about A are 
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and  respectively. 

Considering the anticlockwise direction as positive, the rotation at A can be written as, 

 

 

                                or 

 

 

The suffix z in ω represents the rotation about z-axis. 

When u = u (x, y) and v = v (x, y) the rotation and angular deformation of a fluid element 
exist simultaneously. 

Special case : Situation of pure Rotation 

 

 ,     and 

Observation: 

Vortex line: 

If tangent to an imaginary line at a point lying on it is in the direction of the Vorticity vector at 

that point , the line is a vortex line.For an irrotational flow, vorticity components are zero.The 

general equation of the vortex line can be written as, 

 

 

 

In a rectangular cartesian cartesian coordinate system, it becomes 

 

 

 

 

where, 
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Vorticity components as vectors: 

The vorticity is actually an anti symmetric tensor and its three distinct elements transform like 
the components of a vector in cartesian coordinates.This is the reason for which the vorticity 
components can be treated as vectors. 

Existence of Flow 

A fluid must obey the law of conservation of mass in course of its flow as it is a material 
body.For a Velocity field to exist in a fluid continuum, the velocity components must 
obey the mass conservation principle.Velocity components which follow the mass 
conservation principle are said to constitute a possible fluid flowVelocity components 
violating this principle, are said to describe an impossible flow.The existence of a 
physically possible flow field is verified from the principle of conservation of mass.The 
detailed discussion on this is deferred to the next chapter along with the discussion on 


principles of conservation of momentum and energy.

System 

 

 

 

 

 

 

 

                                                Fig 9.1 System and Surroundings 

Definition System: A quantity of matter in space which is analyzed during a problem.

Surroundings: Everything external to the system.

System Boundary: A separation present between system and surrounding.
Classification of the system boundary:- 

Real solid boundary 

Imaginary boundary 

The system boundary may be further classified as:- 

Fixed boundary or Control Mass System 

Moving boundary or Control Volume System 

The choice of boundary depends on the  problem being analyzed. 
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Classification of Systems 

 

 

 

 

 

 

 

 

 

 

 

Types of System 

 

 

 

 

                                   Fig 9.1 System and Surroundings 

 

 

 

                       Fig 9.2 A Control Mass System or Closed System 

Control Mass System (Closed System) 

Its a system of fixed mass with fixed identity. 

This type of system is usually referred to as "closed system". 

There is no mass transfer across the system boundary. 

Energy transfer may take place into or out of the system. 
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Click to play the Demonstration 

Control Volume System (Open System) 

Its a system of fixed volume. 

This type of system is usually referred to as "open system” or a "control volume" 

Mass transfer can take place across a control volume. 

Energy transfer may also occur into or out of the system. 

A control volume can be seen as a fixed region across which mass and energy transfers are 
studied. 
Control Surface- Its the boundary of a control volume across which the transfer of both mass 
and energy takes place. 
The mass of a control volume (open system) may or may not be fixed. 

When the net influx of  mass across the control surface equals zero then the mass of the 
system is fixed and vice-versa. 
The identity of mass in a control volume always changes unlike the case for a control mass 
system (closed system). 

Most of the engineering devices, in general, represent an open system or control volume. 

Example:- 

Heat exchanger - Fluid enters and leaves the system continuously with the transfer of heat across 
the system boundary.
Pump - A continuous flow of fluid takes place through the system with a transfer of 
mechanical energy from the surroundings to the system.

















               Fig 9.3 A Control Volume System or Open System 





http://www.nptel.ac.in/courses/112104118/lecture-9/animation/demonstration_close_system.htm
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Click to play the Demonstration 

Isolated System 

Its a system of fixed mass with same identity and fixed energy.  

No interaction of mass or energy takes place between the system and the surroundings. 

In more informal words an isolated system is like a closed shop amidst a busy market.  

 

 

 

 

 

 

 

 

 

 

                                 

                                      Fig 9.4 An Isolated System 

Conservation of Mass - The Continuity Equation 

Law of conservation of mass 

The law states that mass can neither be created nor be destroyed. Conservation of mass is 
inherent to a control mass system (closed system) 

The mathematical expression for the above law is stated as:

∆m/∆t = 0, where m = mass of the system 

For a control volume (Fig.9.5), the principle of conservation of mass is stated as
Rate at which mass enters = Rate at which mass leaves the region + Rate of accumulation 
of mass in the region 

Continuity equation 

The above statement expressed analytically in terms of velocity and density field of a flow is 
known as the equation of continuity. 
 

 

 

 

http://www.nptel.ac.in/courses/112104118/lecture-9/animation/Demonstration_open_system.htm
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Click to play the Demonstration 

Continuity Equation - Differential Form 

Derivation 

The point at which the continuity equation has to be derived, is enclosed by an elementary 

control volume.The influx, efflux and the rate of accumulation of mass is calculated across each 

surface within the control volume 

 

 

 

 

 

 

 

 

 

 

 

   Fig 9.6 A Control Volume Appropriate to a Rectangular Cartesian Coordinate System

http://www.nptel.ac.in/courses/112104118/lecture-9/animation/Demonstration_flow_field.htm
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Consider a rectangular parallelopiped in the above figure as the control volume in a rectangular 

cartesian frame of coordinate axes.Net efflux of mass along x -axis must be the excess outflow 

over inflow across faces normal to x -axis.Let the fluid enter across one of such faces ABCD 

with a velocity u and a density ρ.The velocity and density with which the fluid will leave the face 
EFGH will 
 

be   and  respectively (neglecting the higher order terms in δx). 

Therefore, the rate of mass entering the control volume through face ABCD = ρu dy dz.
The rate of mass leaving the control volume through face EFGH will be 

 

                                
(neglecting the higher order terms in dx) 

Similarly influx and efflux take place in all y and z directions also.
 

 

 

     

             Rate of accumulation for a point in a flow field




Using, Rate of influx = Rate of Accumulation + Rate of Efflux 

 

 

 

 

 

          Transferring everything to right side 
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Continuity Equation - Vector Form 

This is the Equation of Continuity for a compressible fluid in a rectangular cartesian 
coordinate system. 

The continuity equation can be written in a vector form as 

 

  

  

  

 

 

 

 

where   is the velocity of the point 

In case of a steady flow,
Hence Eq. (9.3) becomes
 (9.4) 

In a rectangular cartesian coordinate system


(9.5) 

Equation (9.4) or (9.5) represents the continuity equation for a steady flow.
In case of an incompressible flow,

ρ = constant 

Hence, 
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Therefore, the continuity equation for an incompressible flow becomes 

                                                                     
 

 

In cylindrical polar coordinates   reduces to 
 

 

 

         can be written in terms of the strain rate components as 
 

 


Continuity Equation - A Closed System Approach 

We know that the conservation of mass is inherent to the definition of a closed system as Dm/Dt 
= 0 (where m is the mass of the closed system). 

However, the general form of continuity can be derived from the basic equation of mass 
conservation of a system. 

Derivation :- 

Let us consider an elemental closed system of volume V and density ρ. 
 

 

 

 

 

 

 

 

 

 

 

 

http://www.nptel.ac.in/courses/112104118/lecture-9/9-6a_cont_eqn_cylin_polar.htm
http://www.nptel.ac.in/courses/112104118/lecture-9/9-6b_strain_rate_comp.htm
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Now  (dilation per unit volume) 

 

 

 

 

 

 

 

 

 

In vector notation we can write this as 

 

Stream Function 

Let us consider a two-dimensional incompressible flow parallel to the x - y plane in a 
rectangular cartesian coordinate system. The flow field in this case is defined by 

u = u(x, y, t) 

v = v(x, y, t) 

 

   w = 0 

The equation of continuity is 

 

 

If a function ψ(x, y, t) is defined in the manner 

 

 

 

 

 

so that it automatically satisfies the equation of continuity (Eq. (10.1)), then the function 
is known as stream function. 

Note that for a steady flow, ψ is a function of two variables x and y only. 
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Constancy of ψ on a Streamline 

Since ψ is a point function, it has a value at every point in the flow field. Thus a change in 
the stream function ψ can be written as 

 

 

The equation of a streamline is given by 

 

It follows that dψ = 0 on a streamline.This implies the value of ψ is constant along a streamline. 
Therefore, the equation of a streamline can be expressed in terms of stream function as 

 

 

 

 

 

 

 

 

Once the function ψ is known, streamline can be drawn by joining the same values of ψ 
in the flow field. 

Stream function for an irrotational flow 

In case of a two-dimensional irrotational flow 

Conclusion drawn:For an irrotational flow, stream function satisfies the Laplace’s equation 

Physical Significance of Stream Funtion ψ 

Figure 10.1 illustrates a two dimensional flow. 

 

 

 

 

 

ψ(x, y) = constant (10.3) 
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                     Fig 10.1 Physical Interpretation of Stream Function 

Let A be a fixed point, whereas P be any point in the plane of the flow. The points A and P are 

joined by the arbitrary lines ABP and ACP. For an incompressible steady flow, the volume flow 

rate across ABP into the space ABPCA (considering a unit width in a direction perpendicular to the 

plane of the flow) must be equal to that across ACP. A number of different paths connecting A and 

P (ADP, AEP,...) may be imagined but the volume flow rate across all the paths would be the same. 

This implies that the rate of flow across any curve between A and P depends only on the end 

points A and P. 

Since A is fixed, the rate of flow across ABP, ACP, ADP, AEP (any path connecting A and P) 
is a function only of the position P. This function is known as thestream function ψ. 

The value of ψ at P represents the volume flow rate across any line joining P to A. 
 

The value of ψ at A is made arbitrarily zero. If a point P’ is considered (Fig. 10.1b),PP’ being 
along a streamline, then the rate of flow across the curve joining A to P’ must be the same as 
across AP, since, by the definition of a streamline, there is no flow across PP' 
 

The value of ψ thus remains same at P’ and P. Since P’ was taken as any point on the streamline 
through P, it follows that ψ is constant along a streamline. Thus the flow may be represented by 
a series of streamlines at equal increments of ψ. 

In fig (10.1c) moving from A to B net flow going past the curve AB is 
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The stream function, in a polar coordinate system is defined as 

 

 

 

The expressions for Vr and Vθ in terms of the stream function automatically satisfy the 

equation of continuity given by 

 

tream Function in Three Dimensional and Compressible Flow 

 

 

Stream Function in Three Dimensional Flow 

In case of a three dimensional flow, it is not possible to draw a streamline with a single stream 
function. 

An axially symmetric three dimensional flow is similar to the two-dimensional case in a sense 
that the flow field is the same in every plane containing the axis of symmetry. 

The equation of continuity in the cylindrical polar coordinate system for an incompressible 
flow is given by the following equation 
 

 

For an axially symmetric flow (the axis r = 0 being the axis of symmetry), the term =0 

,and simplified equation is satisfied by functions defined as 
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The function ψ , defined by the Eq.(10.4) in case of a three dimensional flow with an 
axial symmetry, is called the stokes stream function. 

Stream Function in Compressible Flow 

For compressible flow, stream function is related to mass flow rate instead of volume flow rate 
because of the extra density term in the continuity equation (unlike incompressible flow) 

The continuity equation for a steady two-dimensional compressible flow is given by 

 

 

 

Hence a stream function ψ is defined which will satisfy the above equation of continuity as 

 

     

  

                                               [where ρ0 is a reference density] 

(10.5) 

 

 

ρ0 is used to retain the unit of ψ same as that in the case of an incompressible flow. Physically, 
the difference in stream function between any two streamlines multiplied by the reference 

density ρ0 will give the mass flow rate through the passage of unit width formed by the 

streamlines 

Continuity Equation: Integral Form 

Let us consider a control volume  bounded by the control surface S. The efflux of mass across 
the control surface S is given by 
 

 

where  is the velocity vector at an elemental area( which is treated as a vector by considering 

its positive direction along the normal drawn outward from the surface). 
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Fig 10.2 A Control Volume for the Derivation of Continuity Equation (integral form) 

The rate of mass accumulation within the control volume becomes 

 

 

 

where d  is an elemental volume, ρ is the density and  is the total volume bounded by the 
control surface S. Hence, the continuity equation becomes (according to the statement given 
by Eq. (9.1)) 

 

 

 

                                                                                                                                  (10.6) 

The second term of the Eq. (10.6) can be converted into a volume integral by the use 
of the Gauss divergence theorem as 

 

 

 

Since the volume  does not change with time, the sequence of differentiation and integration 
in the first term of Eq.(10.6) can be interchanged. 

Therefore Eq. (10.6) can be written as 

 

 
 

Equation (10.7) is valid for any arbitrary control volume irrespective of its shape and size. So 
we can write 

 

Definition 

System: A quantity of matter in space which is analyzed during a problem.
Surroundings: Everything external to the system.
System Boundary: A separation present between system and surrounding.

Classification of the system boundary:- 

Real solid boundary
 Imaginary boundary



59 

 

The system boundary may be further classified as:- 

Fixed boundary or Control Mass System 

Moving boundary or Control Volume System
The choice of boundary depends on the  problem being analyzed. 

 

 

 

 

 

 

 

 

Fig 9.1 System and Surroundings 

Types of System 

Control Mass System (Closed System) 

Its a system of fixed mass with fixed identity. 

This type of system is usually referred to as "closed system". 

There is no mass transfer across the system boundary. 

Energy transfer may take place into or out of the system.  

 

 

 

 

 

 

 

 

 

      Fig 9.2A Control Mass System or Closed System 

 

 

 



60 

 

 

Click to play the Demonstration 

 

Control Volume System (Open System) 

Its a system of  fixed volume 

 

This type of system is usually referred to as "open system” or a "control volume"Mass transfer 

can take place across a control volume. 

 Energy transfer may also occur into or out of the system.  

 A control volume can be seen as a fixed region across which mass and energy 
transfers are studied.  

 Control Surface- Its the boundary of a control volume across which the 
transfer of both mass and energy takes place.  

 The mass of a control volume (open system) may or may not be fixed.  

 When the net influx of mass across the control surface equals zero then the 
mass of the system is fixed and vice-versa.  

 The identity of mass in a control volume always changes unlike the case for a 
control mass system (closed system).  

 Most of the engineering devices, in general, represent an open system or control 
volume. 

Example:- 

 Heat exchanger - Fluid enters and leaves the system continuously with the 
transfer of heat across the system boundary.

 Pump - A continuous flow of fluid takes place through the system with a 
transfer of mechanical energy from the surroundings to the system. 

 

 

 

 

 

 

 

 

        Fig 9.3 A Control Volume System or Open System 

http://www.nptel.ac.in/courses/112104118/lecture-9/animation/demonstration_close_system.htm
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Isolated System 

Its a system of fixed mass with same identity and fixed energy.  

No interaction of mass or energy takes place between the system and the 
surroundings.In more informal wordan isolated system is like aclosed shop amidst a 
busy market  

  

  

Fig 9.4 An Isolated Syste 

 

 

 

 

 

 

 

  

 

  

Fig 9.4 An Isolated Syste 
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Conservation of Momentum: Momentum Theorem 

In Newtonian mechanics, the conservation of momentum is defined by Newton’s second law 
of motion. 

Newton’s Second Law of Motion 

The rate of change of momentum of a body is proportional to the impressed action and takes 
place in the direction of the impressed action.
If a force acts on the body ,linear momentum is implied.
If a torque (moment) acts on the body,angular momentum is implied.
Reynolds Transport Theorem 

A study of fluid flow by the Eulerian approach requires a mathematical modeling for a control 

volume either in differential or in integral form. Therefore the physical statements of the 
principle of conservation of mass, momentum and energy with reference to a control volume 
become necessary. 

This is done by invoking a theorem known as the Reynolds transport theorem which relates the 

control volume concept with that of a control mass system in terms of a general property of the 

system. 

Statement of Reynolds Transport Theorem theorem states that "the time rate of increase of 

property N within a control mass system is equal to the time rate of increase of property N within 

the control volume plus the net rate of efflux of the property N across the control surface”. 

 

Equation of Reynolds Transport Theorem 

After deriving Reynolds Transport Theorem according to the above statement we get  

 

 

 

In this equation 

N - flow property which is transported- intensive value of the flow property 

Analysis Of Finite Control Volumes - the application of momentum theorem 

We'll see the application of momentum theorem in some practical cases of inertial and 
non-inertial control volumes. 

Inertial Control Volumes 

Applications of momentum theorem for an inertial control volume are described with 
reference to three distinct types of practical problems, namelyForces acting due to internal 
flows through expanding or reducing pipe bends.Forces on stationary  and moving vanes due 
to impingement of fluid jets.Jet propulsion of ship and aircraft moving with uniform velocity. 

 

http://www.nptel.ac.in/courses/112104118/lecture-10/10-5a_deriv_reynold_theorem.htm
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Non-inertial Control Volume 

A good example of non-inertial control volume is a rocket engine which works on the 
principle of jet propulsion.We shalll discuss each example seperately in the following slides. 

Eulers Equation along a Streamline 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                Fig 12.3 Force Balance on a Moving Element Along a Streamline 
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Derivation 

Euler’s equation along a streamline is derived by applying Newton’s second law of motion to a 

fluid element moving along a streamline. Considering gravity as the only body force component 
acting vertically downward (Fig. 12.3), the net external force acting on the fluid element along 

the directions can be written as 

(12.8) 

 

where ∆A is the cross-sectional area of the fluid element. By the application of Newton’s 
second law of motion in s direction, we get 
 

 

(12.9) 

 

From geometry we get 

 

 

 

Hence, the final form of Eq. (12.9) becomes 

 
 

 

 

 

     Equation (12.10) is the Euler’s equation along a streamline. 

Let us consider  along the streamline so that 

 

 

Again, we can write from Fig. 12.3 

 

 

The equation of a streamline is given by 
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which finally leads to 

 

 

 

Multiplying Eqs (12.7a), (12.7b) and (12.7c) by dx, dy and dz respectively and then substituting 
the above mentioned equalities, we get 
 

 

 

 

 

 

 

Adding these three equations, we can write 

 

 

 

 

 

 

 

Hence, 

This is the more popular form of Euler's equation because the velocity vector in a flow field is 
always directed along the streamline. 
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A Control Volume Approach for the Derivation of Euler’s Equation 

Euler’s equations of motion can also be derived by the use of the momentum theorem for 
a control volume. 

Derivation 

In a fixed x, y, z axes (the rectangular cartesian coordinate system), the parallelopiped which was 

taken earlier as a control mass system is now considered We can define the velocity vector  and 

the body force per unit volume asas a control volume (Fig. 12.4). 
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Fig 12.4 A Control Volume used for the derivation of Euler's Equation 

 

The rate of x momentum influx to the control volume through the face ABCD is equal to ρu2
 

dy dz. The rate of x momentum efflux from the control volume through the face EFGH 

equals  

Therefore the rate of net efflux of x momentum from the control volume due to the faces 
 

perpendicular to the x direction (faces ABCD and EFGH) = where,  , 

the elemental volume = dx dy dz. 

Similarly, 

The rate of net efflux of x momentum due to the faces perpendicular to the y direction 

(face BCGF and ADHE) =  

The rate of net efflux of x momentum due to the faces perpendicular to the z direction 

(faces DCGH and ABFE) =  

Hence, the net rate of x momentum efflux from the control volume becomes 

 

 

 

The time rate of increase in x momentum in the control volume can be written as 

 (Since,  , by the definition of control volume, is invariant with time) 

Applying the principle of momentum conservation to a control volume (Eq. 4.28b), we get 

(12.11a) 

 

The equations in other directions y and z can be obtained in a similar way by considering the y 
momentum and z momentum fluxes through the control volume as 
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(12.11b) 

(12.11c) 

 

The typical form of Euler’s equations given by Eqs (12.11a), (12.11b) and (12.11c) are known 
as the conservative forms. 

Bernoulli's Equation 

Energy Equation of an ideal Flow along a Streamline 

Euler’s equation (the equation of motion of an inviscid fluid) along a stream line for a steady 
flow with gravity as the only body force can be written as 

 

 

(13.6) 

 

Application of a force through a distance ds along the streamline would physically imply work 
interaction. Therefore an equation for conservation of energy along a streamline can be obtained 
by integrating the Eq. (13.6) with respect to ds as 

 

 

 

 

Where C is a constant along a streamline. In case of an incompressible flow, Eq. can be 
written as 

 

The Eqs (13.7) and (13.8) are based on the assumption that no work or heat interaction between 

a fluid element and the surrounding takes place. The first term of the Eq. (13.8) represents the 

flow work per unit mass, the second term represents the kinetic energy per unit mass and the 

third term represents the potential energy per unit mass. Therefore the sum of three terms in the 

left hand side of Eq. (13.8) can be considered as the total mechanical energy per unit mass which 

remains constant along a streamline for a steady inviscid and incompressible flow of fluid. 

Hence the Eq. (13.8) is also known as Mechanical energy equation. 

(13.9) 
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In a fluid flow, the energy per unit weight is termed as head. Accordingly, equation 13.9 can 
be interpreted as 

Pressure head + Velocity head + Potential head =Total head (total energy per unit weight). 

Bernoulli's Equation with Head Loss 

The derivation of mechanical energy equation for a real fluid depends much on the information 

about the frictional work done by a moving fluid element and is excluded from the scope of the 

book. However, in many practical situations, problems related to real fluids can be analysed with 

the help of a modified form of Bernoulli’s equation as 

 

 

 

(13.10) 

 

where, hf represents the frictional work done (the work done against the fluid friction) per unit 
weight of a fluid element while moving from a station 1 to 2 along a streamline in the direction 

of flow. The term hf is usually referred to as head loss between 1 and 2, since it amounts to the 
loss in total mechanical energy per unit weight between points 1 and 2 on a streamline due to 
the effect of fluid friction or viscosity. It physically signifies that the difference in the total 
mechanical energy between stations 1 and 2 is dissipated into intermolecular or thermal energy 

and is expressed as loss of head hf in Eq. (13.10). The term head loss, is conventionally 

symbolized as hL instead of hf in dealing with practical problems. For an inviscid flow hL = 0, 
and the total mechanical energy is constant along a streamline. 

 

Bernoulli's Equation In Irrotational Flow 

In the previous lecture (lecture 13) we have obtained Bernoulli’s equation 

 

 

 

 

This equation was obtained by integrating the Euler’s equation (the equation of motion) 

with respect to a displacement 'ds' along a streamline. Thus, the value of C in the above 
equation is constant only along a streamline and should essentially vary from 

streamline to streamline.

The equation can be used to define relation between flow variables at point B on the streamline 

and at point A, along the same streamline. So, in order to apply this equation, 



70 

 

one should have knowledge of velocity field beforehand. This is one of the limitations of 
application of Bernoulli's equation. 

Irrotationality of flow field 

Under some special condition, the constant C becomes invariant from streamline to streamline 

and the Bernoulli’s equation is applicable with same value of C to the entire flow field. The 

typical condition is the irrotationality of flow field. 

Proof: 

Let us consider a steady two dimensional flow of an ideal fluid in a rectangular 

Cartesian coordinate system. The velocity field is given by 

 

 

hence the condition of irrotationality is 

 

 

 

 

 

 

 

         The steady state Euler's equation can be written as 

 

(14.2a) 

 

 

 

  We consider the y-axis to be vertical and directed positive upward. From the condition of 

 

irrotationality given by the Eq. (14.1), we substitute  in place of  in the Eq. 14.2a 

 

and  in place of  in the Eq. 14.2b. This results in 
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(14.3a) 

 (14.3b) 

 

Now multiplying Eq.(14.3a) by 'dx' and Eq.(14.3b) by 'dy' and then adding these two 

equations we have 

(14.4) 

 

The Eq. (14.4) can be physically interpreted as the equation of conservation of energy for 

an arbitrary displacement 

. Since, u, v and p are functions of x and y, we can write 

(14.5a) 

 

 

(14.5b) 

 

 

(14.5c) 

 

 

With the help of Eqs (14.5a), (14.5b), and (14.5c), the Eq. (14.4) can be written as 
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The integration of Eq. 14.6 results in 

 

(14.7a) 

 

For an incompressible flow 

The constant C in Eqs (14.7a) and (14.7b) has the same value in the entire flow field, since no 

restriction was made in the choice of dr which was considered as an arbitrary displacement in 

evaluating the work. 

Note: In deriving Eq. (13.8) the displacement ds was considered along a streamline. Therefore, the 

total mechanical energy remains constant everywhere in an inviscid and irrotational flow, while it 

is constant only along a streamline for an inviscid but rotational flow. 

The equation of motion for the flow of an inviscid fluid can be written in a vector form as 

 

 

 

 

 

 

                 

where  is the body force vector per unit mass 

Plane Circular Vortex Flows 

Plane circular vortex flows are defined as flows where streamlines are concentric circles. 
Therefore, with respect to a polar coordinate system with the centre of the circles as the 
origin or pole, the velocity field can be described as 

 

      where Vθ and Vr are the tangential and radial component of velocity respectively. 

 

The equation of continuity for a two dimensional incompressible flow in a polar 
coordinate system is 
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which for a plane circular vortex flow gives  i.e. Vθ is not a function of θ. Hence, Vθ is 

a function of r only.We can write for the variation of total mechanical energy with radius as 



 

 

    Free Vortex Flows 

Free vortex flows are the plane circular vortex flows where the total mechanical energy 

remains constant in the entire flow field. There is neither any addition nor any destruction 
of energy in the flow field.

Therefore, the total mechanical energy does not vary from streamline to streamline. 
Hence from Eq. (14.8), we have, 

 

 

 

 

 

(14.9) 

 

            Integration of Eq 14.9 gives


(14.10) 

The Eq. (14.10) describes the velocity field in a free vortex flow, where C is a constant in the 
entire flow field. The vorticity in a polar coordinate system is defined by - 

 

 

 

In case of vortex flows, it can be written as 
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For a free vortex flow, described by Eq. (14.10),Ω becomes zero. Therefore we conclude that a 
free vortex flow is irrotational, and hence, it is also referred to asirrotational vortex.
It has been shown before that the total mechanical energy remains same throughout in an 
irrotational flow field. Therefore, irrotationality is a direct consequence of the constancy of total 
mechanical energy in the entire flow field and vice versa.
The interesting feature in a free vortex flow is that as  [Eq. (14.10)]. It 

mathematically signifies a point of singularity at r = 0 which, in practice, is impossible. In fact, the 

definition of a free vortex flow cannot be extended as r = 0 is approached.
In a real fluid, friction becomes dominant as r→0 and so a fluid in this central region tends 

to rotate as a solid body. Therefore, the singularity at r = 0 does not render the theory of 
irrotational vortex useless, since, in practical problems, our concern is with conditions away 

from the central core.
Pressure Distribution in a Free Vortex Flow 

Pressure distribution in a vortex flow is usually found out by integrating the equation of 
motion in the r direction. The equation of motion in the radial direction for a vortex 
flow can be written as 

 

 

(14.11) 

 

(14.12) 

 

Integrating Eq. (14.12) with respect to dr, and considering the flow to be incompressible we 
have, 

 

(14.13) 

For a free vortex flow,


Hence Eq. 14.13 becomes


(14.14) 
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If the pressure at some radius r = ra, is known to be the atmospheric pressure patm then 

equation (14.14) can be written as 

 

 

 

 

where z and za are the vertical elevations (measured from any arbitrary datum) at r and ra. 

Equation (14.15) can also be derived by a straight forward application of Bernoulli’s 

equation between any two points at r = ra and r = r.
In a free vortex flow total mechanical energy remains constant. There is neither any 

energy interaction between an outside source and the flow, nor is there any dissipation of 

mechanical energy within the flow. The fluid rotates by virtue of some rotation 

previously imparted to it or because of some internal action.
Some examples are a whirlpool in a river, the rotatory flow that often arises in a shallow 

vessel when liquid flows out through a hole in the bottom (as is often seen when water 
flows out from a bathtub or a wash basin), and flow in a centrifugal pump case just 

outside the impeller.
Cylindrical Free Vortex 

A cylindrical free vortex motion is conceived in a cylindrical coordinate system with axis z 
directing vertically upwards (Fig. 14.1), where at each horizontal cross-section, there 
exists a planar free vortex motion with tangential velocity given by Eq. (14.10).

The total energy at any point remains constant and can be written as 

 

 

(14.16) 

 

The pressure distribution along the radius can be found from Eq. (14.16) by considering z as 

constant; again, for any constant pressure p, values of z, determining a surface of equal pressure, 
can also be found from Eq. (14.16).
If p is measured in gauge pressure, then the value of z, where p = 0 determines the free 
surface (Fig. 14.1), if one exists.
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                          Fig 14.1 Cylindrical Free Vortex 

Forced Vortex Flows 

Flows where streamlines are concentric circles and the tangential velocity is directly 
proportional to the radius of curvature are known as plane circular forced vortex flows.
The flow field is described in a polar coordinate system as, 

 

 

  

and  
 

All fluid particles rotate with the same angular velocity ω like a solid body. Hence a forced 
vortex flow is termed as a solid body rotation.The vorticity Ω for the flow field can be 
calculated as Therefore, a forced vortex motion is not irrotational; rather it is a rotational 
flow with a constant vorticity 2ω. Equation (14.8) is used to determine the distribution of 
mechanical energy across the radius as








 

Integrating the equation between the two radii on the same horizontal plane, we have,


(14.18) 
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Thus, we see from Eq. (14.18) that the total head (total energy per unit weight) increases with 

an increase in radius. The total mechanical energy at any point is the sum of kinetic energy, 
flow work or pressure energy, and the potential energy.
Therefore the difference in total head between any two points in the same horizontal plane 
can be written as, 

 

 

 

 

Substituting this expression of H2-H1 in Eq. (14.18), we get




The same equation can also be obtained by integrating the equation of motion in a radial 
direction as 

 

 

 

 

 

Measurement Of Flow Rate Through Pipe 

Flow rate through a pipe is usually measured by providing a coaxial area contraction within the 

pipe and by recording the pressure drop across the contraction. Therefore the determination of 

the flow rate from the measurement of pressure drop depends on the straight forward application 

of Bernoulli’s equation. 

Three different flow meters operate on this principle. 

Venturimeter 

Orificemeter 

Flow nozzle. 

http://www.nptel.ac.in/courses/112104118/lecture-15/15-1_mesure_flow.htm
http://www.nptel.ac.in/courses/112104118/lecture-15/15-3_orificemetr.htm
http://www.nptel.ac.in/courses/112104118/lecture-15/15-5_flow_nozzle.htm
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Venturimeter 
 

Construction: A venturimeter is essentially a short pipe (Fig. 15.1) consisting of two conical 
parts with a short portion of uniform cross-section in between. This short portion has the 

minimum area and is known as the throat. The two conical portions have the same base 
diameter, but one is having a shorter length with a larger cone angle while the other is having a 

larger length with a smaller cone angle. 

 

Fig 15.1 A Venturimeter 
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Working: 
 

The venturimeter is always used in a way that the upstream part oftheflowtakesplacthroughthe 

short conical portion while the downstream part of the flow through thelong one.This ensures a 

rapid converging passage and a gradual diverging passage in the direction of flow to avoid the loss 

of energy due to separation. In course of a flow through the converging part, the velocity increases 

in the direction of flow according to the principle of continuity, while the pressure decreases 

according to Bernoulli’s theorem.
The velocity reaches its maximum value and pressure reaches its minimum value at the throat. 
Subsequently, a decrease in the velocity and an increase in the pressure takes place in course of 

flow through the divergent part. This typical variation of fluid velocity and pressure by allowing 
it to flow through such a constricted convergent-divergent passage was first demonstrated by an 

Italian scientist Giovanni Battista Venturi in 1797. 

 

 

 

 

 

 

 

 

 

 

 

 

 

      Fig 15.2 Measurement of Flow by a Venturimeter 

 Figure 15.2 shows that a venturimeter is inserted in an inclined pipe line in a vertical plane to 

measure the flow rate through the pipe. Let us consider a steady, ideal and one dimensional 

(along the axis of the venturi meter) flow of fluid. Under this situation, the velocity and 

pressure at any section will be uniform.

Let the velocity and pressure at the inlet (Sec. 1) are V1 and p1 respectively, while those at the 

throat (Sec. 2) are V2 and p2. Now, applying Bernoulli’s equation between Secs 1 
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and 2, we get 

 

 

(15.1) 

(15.2)  

 

where ρ is the density of fluid flowing through the venturimeter. 
 

From continuity, 

 

(15.3)  

 

where A1 and A2 are the cross-sectional areas of the venturi meter at its throat and 

inlet respectively. 

 

 

With the help of Eq. (15.3), Eq. (15.2) can be written as
 

 

 

 

 

 

 

where and are the piezometric pressure heads at sec. 1 and sec. 2 respectively, and are 
defined as 
 

 

(15.5a)  

(15.5b)  
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Hence, the volume flow rate through the pipe is given by 
 

 

(15.6) 

 

 

If the pressure difference between Sections 1 and 2 is measured by a manometer as 
shown in Fig. 15.2, we can write 

 

 

 

 

 

 

 

(15.7) 

where ρm is the density of the manometric liquid. 

Equation (15.7) shows that a manometer always registers a direct reading of the

difference in piezometric pressures. Now, substitution of  from Eq. (15.7) in 

Eq. (15.6) gives 

 

 

 

(15.8) 

If the pipe along with the venturimeter is horizontal, then z1 = z2; and

hence  becomes h1 − h2, where h1 and h2 are the static pressure heads 





The manometric equation Eq. (15.7) then becomes 
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Therefore, it is interesting to note that the final expression of flow rate, given by Eq.
(15.8), in terms of manometer deflection ∆h, remains the same irrespective of whether the pipe-
line along with the venturimeter connection is horizontal or not.Measured values of ∆h, the 
difference in piezometric pressures between Secs I and 2, for a real fluid will always be greater 
than that assumed in case of an ideal fluid because of frictional losses in addition to the change in 
momentum. 







Therefore, Eq. (15.8) always overestimates the actual flow rate. In order to take this into 

account, a multiplying factor Cd, called the coefficient of discharge, is incorporated in 
the Eq. (15.8) as

The coefficient of discharge Cd is always less than unity and is defined as 

 

 

 

where, the theoretical discharge rate is predicted by the Eq. (15.8) with the measured value of ∆h, 
and the actual rate of discharge is the discharge rate measured in practice. Value of Cd for a 

venturimeter usually lies between 0.95 to 0.98. 

Orificemeter 

Construction: An orificemeter provides a simpler and cheaper arrangement for the measurement 
of fow through a pipe. An orificemeter is essentially a thin circular plate with a sharp edged 

concentric circular hole in it. 

Working: 

The orifice plate, being fixed at a section of the pipe, (Fig. 15.3) creates an obstruction to the 
flow by providing an opening in the form of an orifice to the flow passage. 

 

 

 

 

 

 

 

                                 Fig 15.3 Flow through an Orificemeter 
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The area A0 of the orifice is much smaller than the cross-sectional area of the pipe. The flow 

from an upstream section, where it is uniform, adjusts itself in such a way that it contracts until a 

section downstream the orifice plate is reached, where the vena contracta is formed, and then 

expands to fill the passage of the pipe.
One of the pressure tapings is usually provided at a distance of one diameter upstream the orifice 
plate where the flow is almost uniform (Sec. 1-1) and the other at a distance of half a diameter 

downstream the orifice plate.
Considering the fluid to be ideal and the downstream pressure taping to be at the vena contracta 

(Sec. c-c), we can write, by applying Bernoulli’s theorem between Sec. 1-1 and Sec. c-c, 

 

 

(15.10) 

 

where and   are the piezometric pressures at Sec.1-1 and c-c respectively. 

From the equation of continuity, 

 

(15.11) 

 

        where Ac is the area of the vena contracta. 

With the help of Eq. (15.11), Eq. (15.10) can be written as, 

 

 

(15.12) 

 

Correction in Velocity 
 

 

 Recalling the fact that the measured value of the piezometric pressure drop for a 
real fluid is always more due to friction than that assumed in case of an inviscid 

flow, a coefficient of velocity Cv (always less than 1) has to be introduced to

determine the actual velocity Vc when the pressure drop  in Eq. (15.12) is 

substituted by its measured value in terms of the manometer deflection '∆h' 
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where '∆h' is the difference in liquid levels in the manometer and ρm is the density 

of the manometric liquid. 

 

Volumetric flow rate 
 

 

15.14) If a coefficient of contraction Cc is defined as, Cc = Ac /A0, where A0 is the 

area of the orifice, then Eq.(15.14) can be written, with the help of Eq. (15.13), 

 

 

 

 

 

 

 

 

The value of C depends upon the ratio of orifice to duct area, and the Reynolds number 
of flow. 

 

 

 
 
 

The main job in measuring the flow rate with the help of an orificemeter, is to find out 
accurately the value of C at the operating condition.
The downstream manometer connection should strictly be made to the section where the 
vena contracta occurs, but this is not feasible as the vena contracta is somewhat variable in 
position and is difficult to realize.
In practice, various positions are used for the manometer connections and C is thereby 

affected. Determination of accurate values of C of an orificemeter at different 

operating conditions is known as calibration of the orifice meter. 

Concept and Types of Physical Similarity 

The primary and fundamental requirement for the physical similarity between two problems is 
that the physics of the problems must be the same. 

For an example, two flows: one governed by viscous and pressure forces while the other by 
gravity force cannot be made physically similar. Therefore, the laws of similarity have to be 
sought between problems described by the same physics. 
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Definition of physical similarity as a general proposition. 

Two systems, described by the same physics, operating under different sets of conditions are 
said to be physically similar in respect of certain specified physical quantities; when the ratio of 
corresponding magnitudes of these quantities between the two systems is the same everywhere. 

In the field of mechanics, there are three types of similarities which constitute the 
complete similarity between problems of same kind. 

 

 

 

 

 

 

 

Geometric Similarity : If the specified physical quantities are geometrical dimensions, the 
similarity is called Geometric Similarty, 

Kinematic Similarity : If the quantities are related to motions, the similarity is called 
Kinematic Similarity 

Dynamic Similarity : If the quantities refer to forces, then the similarity is termed as 
Dynamic Similarity. 

Geometric Similarity 

Geometric Similarity implies the similarity of shape such that, the ratio of any length in one 
system to the corresponding length in other system is the same everywhere.
This ratio is usually known as scale factor.
Therefore, geometrically similar objects are similar in their shapes, i.e., proportionate in 
their physical dimensions, but differ in size.In investigations of physical similarity, 
 

the full size or actual scale systems are known as prototypes 

 

the laboratory scale systems are referred to as models 

 

use of the same fluid with both the prototype and the model is not necessary 

 model need not be necessarily smaller than the prototype. The flow of fluid 

through an injection nozzle or a carburettor , for example, would be more easily 
studied by using a model much larger than the prototype. 
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 the model and prototype may be of identical size, although the two may then 

differ in regard to other factors such as velocity, and properties of the fluid.If l1 

and l2 are the two characteristic physical dimensions of any object, then the 

requirement of geometrical similarity is model ratio) 

(The second suffices m and p refer to model and prototype respectively) where lr is the scale 

factor or sometimes known as the model ratio. Figure 5.1 shows three pairs of geometrically 

similar objects, namely, a right circular cylinder, a parallelopiped, and a triangular prism. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 17.1 Geometrically Similar Objects 

In all the above cases model ratio is 1/2 
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Geometric similarity is perhaps the most obvious requirement in a model system designed to 
correspond to a given prototype system.A perfect geometric similarity is not always easy to 
attain.  

Problems in achieving perfect geometric similarity are: 

 For a small model, the surface roughness might not be reduced according to the scale 
factor (unless the model surfaces can be made very much smoother than those of the 

prototype). If for any reason the scale factor is not the same throughout, a distorted 
model results. 

 Sometimes it may so happen that to have a perfect geometric similarity within the 

available laboratory space, physics of the problem changes. For example, in case of large 

prototypes, such as rivers, the size of the model is limited by the available floor space of 

the laboratory; but if a very low scale factor is used in reducing both the horizontal and 

vertical lengths, this may result in a stream so shallow that surface tension has a 

considerable effect and, moreover, the flow may be laminar instead of turbulent. In this 

situation, a distorted model may be unavoidable (a lower scale factor ”for horizontal 

lengths while a relatively higher scale factor for vertical lengths. The extent to which 

perfect geometric similarity should be sought therefore depends on the problem being 

investigated, and the accuracy required from the solution. 

Kinematic Similarity 

Kinematic similarity refers to similarity of motion. 

Since motions are described by distance and time, it implies similarity of lengths (i.e., 
geometrical similarity) and, in addition, similarity of time intervals. 

If the corresponding lengths in the two systems are in a fixed ratio, the velocities of 

corresponding particles must be in a fixed ratio of magnitude of corresponding time intervals. 

If the ratio of corresponding lengths, known as the scale factor, is lr and the ratio of 

corresponding time intervals is tr, then the magnitudes of correspondingvelocities are in 

the ratio lr/tr and the magnitudes of corresponding accelerations are in the ratio lr/t
2
 r. 

A well-known example of kinematic similarity is found in a planetarium. Here the galaxies 

of stars and planets in space are reproduced in accordance with a certain length scale and in 
simulating the motions of the planets, a fixed ratio of time intervals (and hence velocities and 

accelerations) is used. 

When fluid motions are kinematically similar, the patterns formed by streamlines are 
geometrically similar at corresponding times. 

Since the impermeable boundaries also represent streamlines, kinematically similar flows 

are possible only past geometrically similar boundaries. 
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Therefore, geometric similarity is a necessary condition for the kinematic similarity to be 
achieved, but not the sufficient one. 

For example, geometrically similar boundaries may ensure geometrically similar streamlines 
in the near vicinity of the boundary but not at a distance from the boundary. 

Dynamic Similarity 

Dynamic similarity is the similarity of forces . 

In dynamically similar systems, the magnitudes of forces at correspondingly similar points in 
each system are in a fixed ratio. 

In a system involving flow of fluid, different forces due to different causes may act on a fluid 
element. These forces are as follows: 
 

Viscous Force (due to viscosity) 

 

Pressure Force ( due to different in pressure) 

 

Gravity Force (due to gravitational attraction) 

Capillary Force (due to surface tension) 

Compressibility Force ( due to elasticity) 

According to Newton 's law, the resultant FR of all these forces, will cause the acceleration of 

a fluid element. Hence 

 

 

(17.1) 

Moreover, the inertia force  is defined as equal and opposite to the resultant 

accelerating force  

 = -  

Therefore Eq. 17.1 can be expressed as 

 

 

 

For dynamic similarity, the magnitude ratios of these forces have to be same for both the 
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prototype and the model. The inertia force  is usually taken as the common one to 

describe the ratios as (or putting in other form we equate the the non dimensionalised forces in 

the two systems 

A fluid motion, under all such forces is characterised by 

Hydrodynamic parameters like pressure, velocity and acceleration due to gravity, 

Rheological and other physical properties of the fluid involved, and 

Geometrical dimensions of the system. 

It is important to express the magnitudes of different forces in terms of these parameters, to 
know the extent of their influences on the different forces acting on a flluid element in the 
course of its flow. 

Inertia Force  

The inertia force acting on a fluid element is equal in magnitude to the mass of the 
element multiplied by its acceleration.

The mass of a fluid element is proportional to ρl3 where, ρ is the density of fluid and l is the 
characteristic geometrical dimension of the system.

The acceleration of a fluid element in any direction is the rate at which its velocity in that 
direction changes with time and is therefore proportional in magnitude to some characteristic 
velocity V divided by some specified interval of time t. The time interval t is proportional to the 
characteristic length l divided by the characteristic velocity V, so that the acceleration becomes 

proportional to V
2
/l.

The magnitude of inertia force is thus proportional to 
 

 

 

 

                      This can be written as, 

 

 

(18.1a) 

Viscous Force 

The viscous force arises from shear stress in a flow of fluid.Therefore, we can write 

Magnitude of viscous force  = shear stress  X surface area over which the shear stress acts 
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Again, shear stress = µ (viscosity) X rate of shear strainwhere, rate of shear strain  velocity 

gradient  and surface area Hence 

 

 

Pressure Force  

The pressure force arises due to the difference of pressure in a flow field. 

Hence it can be written as 

 

 

 

(where,  

Gravity Force The gravity force on a fluid element is its 

weight. Hence, 

 
 

(where g is the acceleration due to gravity or weight per unit mass) 

Capillary or Surface Tension Force  

The capillary force arises due to the existence of an interface between two fluids. 

The surface tension force acts tangential to a surface .
It is equal to the coefficient of surface tension σ multiplied by the length of a linear 
element on the surface perpendicular to which the force acts.
Therefore, 

 

(18.1e) 

 

Compressibility or Elastic Force  

Elastic force arises due to the compressibility of the fluid in course of its flow. 

For a given compression (a decrease in volume), the increase in pressure is proportional to the 
bulk modulus of elasticity E
This gives rise to a force known as the elastic force. 
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Hence, for a given compression 

 

(18.1f) 

The flow of a fluid in practice does not involve all the forces simultaneously. 

Therefore, the pertinent dimensionless parameters for dynamic similarity are derived from 
the ratios of significant forces causing the flow. 

Dynamic Similarity of Flows governed by Viscous, Pressure and Inertia Forces 

The criterion of dynamic similarity for the flows controlled by viscous, pressure and inertia 
forces are derived from the ratios of the representative magnitudes of these forces with the help 

of Eq. (18.1a) to (18.1c) as follows: 

 

    

  (18.2a)  

    

    

  (18.2b)  

    

The term is known as Reynolds number, Re after the name of the scientist who first 

 

developed it and is thus proportional to the magnitude ratio of inertia force to viscous 
force .(Reynolds number plays a vital role in the analysis of fluid flow) 

The term  is known as Euler number, Eu after the name of the scientist who first 

derived it. The dimensionless terms Re and Eu represent the critieria of dynamic similarity 

for the flows which are affected only by viscous, pressure and inertia forces. Such instances, 

for example, arethe full flow of fluid in a completely closed conduit,flow of air past a low-

speed aircraft and the flow of water past a submarine deeply submerged to produce no 

waves on the surface. 

Hence, for a complete dynamic similarity to exist between the prototype and the model for 
this class of flows, the Reynolds number, Re and Euler number, Eu have to be same for the 
two (prototype and model). Thus 

 

 

(18.2c) 
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(18.2d) 

where, the suffix p and suffix m refer to the parameters for prototype and model respectively. 

In practice, the pressure drop is the dependent variable, and hence it is compared for the two 
systems with the help of Eq. (18.2d), while the equality of Reynolds number (Eq. (18.2c)) 

along with the equalities of other parameters in relation to kinematic and geometric similarities 
are maintained. 

The characteristic geometrical dimension l and the reference velocity V in the expression of the 

Reynolds number may be any geometrical dimension and any velocity which are significant 

in determining the pattern of flow.

For internal flows through a closed duct, the hydraulic diameter of the duct Dh and the 
average flow velocity at a section are invariably used for l and V respectively.
The hydraulic diameter Dh is defined as Dh= 4A/P where A and P are the cross-sectional area 
and wetted perimeter respectively.
Dynamic Similarity of Flows with Gravity, Pressure and Inertia Forces 

A flow of the type in which significant forces are gravity force, pressure force and 

inertia force, is found when a free surface is present. 

Examples can be 

the flow of a liquid in an open channel. 

the wave motion caused by the passage of a ship through water. 

the flows over weirs and spillways. 

The condition for dynamic similarity of such flows requires 

the equality of the Euler number Eu (the magnitude ratio of pressure to inertia force), and

the equality of the magnitude ratio of gravity to inertia force at corresponding points in the 
systems being compared.

Thus , 

 

 

 

In practice, it is often convenient to use the square root of this ratio so to deal with the first 
power of the velocity.

From a physical point of view, equality of  implies equality of  as 

regard to the concept of dynamic similarity.

The reciprocal of the term  is known as Froude number ( after William Froude who 

first suggested the use of this number in the study of naval architecture. ) 
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Hence Froude number, . 

Therefore, the primary requirement for dynamic similarity between the prototype and the 

model involving flow of fluid with gravity as the significant force, is the equality of Froude 
number, Fr, i.e., 

 

 

 

 

Dynamic Similarity of Flows with Surface Tension as the Dominant Force 

Surface tension forces are important in certain classes of practical problems such as , 

flows in which capillary waves appear 

flows of small jets and thin sheets of liquid injected by a nozzle in air 

flow of a thin sheet of liquid over a solid surface. 

Here the significant parameter for dynamic similarity is the magnitude ratio of the surface 
tension force to the inertia force. 

This can be written as 

The term  is usually known as Weber number, Wb (after the German naval architect 
Moritz Weber who first suggested the use of this term as a relevant parameter. ) 

Thus for dynamically similar flows (Wb)m =(Wb)p 

 

 

 

 

 Dynamic Similarity of Flows with Elastic Force 

When the compressibility of fluid in the course of its flow becomes significant, the elastic 
force along with the pressure and inertia forces has to be considered.Therefore, the magnitude 
ratio of inertia to elastic force becomes a relevant parameter for dynamic similarity under this 
situation. 

Thus we can write, 
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The parameter  is known as Cauchy number ,( after the French mathematician A.L. 

Cauchy)If we consider the flow to be isentropic , then it can be written 

 

 

 

(where Es is the isentropic bulk modulus of elasticity) 

Thus for dynamically similar flows (cauchy)m=(cauchy)p 

 

 

 

The velocity with which a sound wave propagates through a fluid medium equals

to .Hence, the term  can be written as  where a is the acoustic 

velocity in the fluid medium. 

The ratio V/a is known as Mach number, Ma ( after an Austrian physicist Earnst Mach) 

It has been shown in Chapter 1 that the effects of compressibility become important when the 
Mach number exceeds 0.33. 

The situation arises in the flow of air past high-speed aircraft, missiles, propellers and rotory 
compressors. In these cases equality of Mach number is a condition for dynamic similarity. 
Therefore, 

(Ma)p=(Ma)m 

 

i.e. 
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Ratios of Forces for Different Situations of Flow 
 
 

Euler number Eu 

 

Froude number Fr 

 

Weber number Wb 

 

Mach number Ma 

 

Buckingham's Pi Theorem 
 

Assume, a physical phenomenon is described by m number of independent variables like x1 

, x2 , x3 , ..., xm 

 

The phenomenon may be expressed analytically by an implicit functional relationship of 
the controlling variables as 
 

 

(19.2)  

Now if n be the number of fundamental dimensions like mass, length, time, temperature etc 

., involved in these m variables, then according to Buckingham's p theorem - 

 

The phenomenon can be described in terms of (m - n) independent dimensionless groups 

like π1 ,π2 , ..., πm-n , where p terms, represent the dimensionless parameters and consist of 

 

different combinations of a number of dimensional variables out of the m independent 
variables defining the problem. 
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Therefore. the analytical version of the phenomenon given by Eq. (19.2) can be reduced to 

 

 

(19.3) 

according to Buckingham's pi theorem 

This physically implies that the phenomenon which is basically described by m independent 

dimensional variables, is ultimately controlled by (m-n) independent dimensionless 

parameters known as π terms.

Alternative Mathematical Description of (π) Pi Theorem 

A physical problem described by m number of variables involving n number of fundamental 

dimensions (n < m) leads to a system of n linear algebraic equations with m variables of the form 

 

 

 

 

 

 

           or in a matrix form, 

 

(19.5) 

 

 

 

 

 

Determination of π terms 

A group of n (n = number of fundamental dimensions) variables out of m (m = total number 
of independent variables defining the problem) variables is first chosen to form a basis 

so that all n dimensions are represented . These n variables are referred to as repeating 
variables.

Then the p terms are formed by the product of these repeating variables raised to arbitrary 
unknown integer exponents and anyone of the excluded (m -n) variables.

For example , if x1 x2 ...xn are taken as the repeating variables. Then 
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The sets of integer exponents a1, a2 . . . an are different for each p term.

Since p terms are dimensionless, it requires that when all the variables in any p term are 
expressed in terms of their fundamental dimensions, the exponent of all the fundamental 
dimensions must be zero.

This leads to a system of n linear equations in a, a2 . . . an which gives a unique solution for the 

exponents. This gives the values of a1 a2 . . . an for each p term and hence the p terms are 
uniquely defined.
In selecting the repeating variables, the following points have to be considered: 

The repeating variables must include among them all the n fundamental dimensions, not 
necessarily in each one but collectively.  

The dependent variable or the output parameter of the physical phenomenon should not be 
included in the repeating variables. 

No physical phenomena is represented when - 

 m < n because there is no solution and 

m = n because there is a unique solution of the variables involved and hence all the 
parameters have fixed values.

. Therefore all feasible phenomena are defined with m > n . 

When m = n + 1, then, according to the Pi theorem, the number of pi term is one and the 
phenomenon can be expressed as 

 

where, the non-dimensional term π1 is some specific combination of n + 1 variables involved 

in the problem. 

When m > n+ 1 , 

the number of π terms are more than one. 
A number of choices regarding the repeating variables arise in this case. 

Again, it is true that if one of the repeating variables is changed, it results in a different set of π 
terms. Therefore the interesting question is which set of repeating variables is to be chosen , to 

arrive at the correct set of π terms to describe the problem. The answer to this question lies in 
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the fact that different sets of π terms resulting from the use of different sets of repeating 
variables are not independent. Thus, anyone of such interdependent sets is meaningful in 

describing the same physical phenomenon. 

From any set of such π terms, one can obtain the other meaningful sets from some combination 
of the π terms of the existing set without altering their total numbers (m-n) as fixed by the Pi 
theorem. 

Navier-Strokes Equation 

Generalized equations of motion of a real flow named after the inventors CLMH Navier 
and GG Stokes are derived from the Newton's second law

Newton's second law states that the product of mass and acceleration is equal to sum of 

the external forces acting on a body.

External forces are of two kinds-
one acts throughout the mass of the body ----- body force ( gravitational
force, electromagnetic force) 

 another acts on the boundary---------------------- surface force (pressure 

and frictional force). 

Objective - We shall consider a differential fluid element in the flow field (Fig. 24.1). Evaluate 
the surface forces acting on the boundary of the rectangular parallelepiped shown below. 
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Fig. 24.1 Definition of the components of stress and their locations in a differential 
fluid element 

Let the body force per unit mass be 

 

and surface force per unit volume be 

 


Consider surface force on the surface AEHD, per unit area,

[Here second subscript x denotes that the surface force is evaluated for the surface whose 
outward normal is the x axis] 

Surface force on the surface BFGC per unit area is






Net force on the body due to imbalance of surface forces on the above two surfaces is 

 

 

(24.8) 

(since area of faces AEHD and BFGC is dydz) 

Total force on the body due to net surface forces on all six surfaces is 

 

 

(24.9) 

And hence, the resultant surface force dF, per unit volume, is 

 

 

24.10) 

(since Volume= dx dy dz) 
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The quantities ,  and  are vectors which can be resolved into normal stresses 

denoted by  and shearing stresses denoted by  as 

 

 

 

 

 

The stress system has nine scalar quantities. These nine quantities form a stress tensor. 

A general way of deriving the Navier-Stokes equations from the basic laws of physics. 

Consider a general flow field as represented in Fig. 25.1.

Imagine a closed control volume,  within the flow field. The control volume is fixed in space 

and the fluid is moving through it. The control volume occupies reasonably large finite region of 

the flow field.A control surface , A0 is defined as the surface which bounds the volume  .

According to Reynolds transport theorem, "The rate of change of momentum for
a system equals the sum of the rate of change of momentum inside thecontrol volume and the 
rate of efflux of momentum across the control surface".The rate of change of momentum for a 
system (in our case, the control volume boundary and the system boundary are same) is equal to 
the net external force acting on it.Now, we shall transform these statements into equation by 
accounting for each term, 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG 25.1 Finite control volume fixed in space with the fluid moving through it 
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Rate of change of momentum inside the control volume 

 

 

 

 

 

(since t is independent of space variable) 

Rate of efflux of momentum through control surface 

 

 

 

 

 

 

     Surface force acting on the control volume 

 

 

 

(  is symmetric stress tensor ) 

 

Body force acting on the control volume 

 

 

 

 in Eq. (25.4) is the body force per unit mass. 

Finally, we get, 
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                                                  or 

 

 

 

We know that  is the general form of mass conservation equation (popularly 

known as the continuity equation), valid for both compressible andincompressible flows. 

Invoking this relationship in Eq. (25.5), we obtain 
 

 

 

 

 

 

 

 

 

Equation (25.6) is referred to as Cauchy's equation of motion . In this equation,  is the 

stress tensor, 

After having substituted  we get 

 

(25.8) 

 

 

(25.9) 

From Stokes's hypothesis we get, 

Invoking above two relationships into Eq.( 25.6) we get 

 

 

 

(25.10) 

http://www.nptel.ac.in/courses/112104118/lecture-25/hyperlink/19-5_gen_nav_hyperlink.htm
http://www.nptel.ac.in/courses/112104118/lecture-25/hyperlink/19-5_gen_nav_hyperlink.htm
http://www.nptel.ac.in/courses/112104118/lecture-25/hyperlink/19-5_gen_nav_hyperlink.htm
http://www.nptel.ac.in/courses/112104118/lecture-25/hyperlink/19-5_gen_nav_hyperlink.htm
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This is the most general form of Navier-Stokes equation. 

Exact Solutions Of Navier-Stokes Equations 

Consider a class of flow termed as parallel flow in which only one velocity term is 
nontrivial and all the fluid particles move in one direction only. 

We choose  to be the direction along which all fluid particles travel ,

i.e.  . Invoking this in continuity equation, we get 

 

 

 

 

 

which means  

Now. Navier-Stokes equations for incompressible flow become 

 

 

 

 

 

 

 

 

 

So, we obtain 

 

 

 

which means  

 

 

(25.11) 
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Introduction 

The boundary layer of a flowing fluid is the thin layer close to the wall
In a flow field, viscous stresses are very prominent within this layer.
Although the layer is thin, it is very important to know the details of flow within it.

The main-flow velocity within this layer tends to zero while approaching the wall (no-
slip condition). 

Also the gradient of this velocity component in a direction normal to the surface is large as 
compared to the gradient in the streamwise direction.

 

Boundary Layer Equations 

In 1904, Ludwig Prandtl, the well known German scientist, introduced the concept of 
boundary layer and derived the equations for boundary layer flow by correct reduction 
of Navier-Stokes equations.

He hypothesized that for fluids having relatively small viscosity, the effect of internal 

friction in the fluid is significant only in a narrow region surrounding solid 

boundaries or bodies over which the fluid flows.


Thus, close to the body is the boundary layer where shear stresses exert an increasingly larger 

effect on the fluid as one moves from free stream towards the solid boundary.
However, outside the boundary layer where the effect of the shear stresses on the flow is 

small compared to values inside the boundary layer (since the velocity

gradient   is negligible),--------- 

 the fluid particles experience no vorticity and therefore, 

 the flow is similar to a potential flow. 

Hence, the surface at the boundary layer interface is a rather fictitious one,

that divides rotational and irrotational flow. Fig 28.1 shows Prandtl's model regarding 
boundary layer flow. 

Hence with the exception of the immediate vicinity of the surface, the flow is frictionless 
(inviscid) and the velocity is U (the potential velocity).

In the region, very near to the surface (in the thin layer), there is friction in the flow 
which signifies that the fluid is retarded until it adheres to the surface (no-slip 

condition).
The transition of the mainstream velocity from zero at the surface (with respect to the 

surface) to full magnitude takes place across the boundary layer.
About the boundary layer 

Boundary layer  thickness is  which is a function of the coordinate direction x .

The thickness is considered to be very small compared to the characteristic 
length L of the domain.



105 

 

In the normal direction, within this thin layer, the gradient  is very large
compared to the gradient in the flow direction  . 

 Now we take up the Navier-Stokes equations for : steady, two dimensional, 

laminar, incompressible flows.  

Considering the Navier-Stokes equations together with the equation of continuity, the 
following dimensional form is obtained. 
 

 

(28.1) 

 

 

 

(28.2) 

 

 

 

(28.3) 

 

 

 

 

 

 

 

 

 

 

 

Fig 28.1 Boundary layer and Free Stream for Flow Over a flat plate 

 u - velocity component along x direction.
 v - velocity component along y direction
 p - static pressure
 ρ - density.
 μ - dynamic viscosity of the fluid
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The equations are now non-dimensionalised.
The length and the velocity scales are chosen as L and  respectively.
The non-dimensional variables are: 

 

 

where  is the dimensional free stream velocity and the pressure is non- 

dimensionalised by twice the dynamic pressure  . 

Using these non-dimensional variables, the Eqs (28.1) to (28.3) become 

 

 

 

 

 

where the Reynolds number, 

 

 

Order of Magnitude Analysis 

 Let us examine what happens to the u velocity as we go across the boundary 
layer. At the wall the u velocity is zero [ with respect to the wall and absolute 
zero for a stationary wall (which is normally implied if not stated otherwise)].

The value of u on the inviscid side, that is on the free stream side beyond 
the boundary layer is U. 

For the case of external flow over a flat plate, this U is equal to . 

 Based on the above, we can identify the following scales for the boundary 
layer variables:

      

      

      

  Variable Dimensional scale Non-dimensional scale  
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The symbol  describes a value much smaller than 1. 

 

 Now we analyse equations 28.4 - 28.6, and look at the order of magnitude of each 

 

individual term 

 

One general rule of incompressible fluid mechanics is that we are not allowed to drop 
 

any term from the continuity equation.    

        

     From the scales of boundary layer variables, the  

   derivative  is of the order 1.  

     The second term in the continuity equation should also be 

   of the order 1.The reason being has to be of the order 

   because becomes  at its maximum.  

        

Eq 28.4 - x direction momentum equation   

        

  Inertia terms are of the order 1.   

   is of the order 1    

   is of the order .   

        

 

However after multiplication with 1/Re, the sum of the two second order derivatives should 
 

produce at least one term which is of the same order of magnitude as the inertia terms. 

This is possible only if the Reynolds number (Re) is of the order of .  
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   It follows from  that will not exceed the order of 1 so as to be in 

 

balance with the remaining term. 
 

 

 Finally, Eqs (28.4), (28.5) and (28.6) can be rewritten as 

 

(28.4) 

 

 

 

(28.5) 
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As a consequence of the order of magnitude analysis,  can be dropped from 

 

the x direction momentum equation, because on multiplication with  it assumes 

the smallest order of magnitude. 

Eq 28.5 - y direction momentum equation. 
 

 All the terms of this equation are of a smaller magnitude than those of Eq. (28.4).

 This equation can only be balanced if  is of the same order of magnitude 

as other terms.
 Thus they momentum equation reduces to 

 

(28.7)  

 This means that the pressure across the boundary layer does not change.

The pressure is impressed on the boundary layer, and its value is determined by 
hydrodynamic considerations. 



 This also implies that the pressure p is only a function of x. The pressure forces on 
a body are solely determined by the inviscid flow outside the boundary layer.

 The application of Eq. (28.4) at the outer edge of boundary layer gives 

 

(28.8a)  

In dimensional form, this can be written as 

 

 

 

(28.8b) 

On integrating Eq ( 28.8b) the well known Bernoulli's equation is obtained a constant 

 

Finally, it can be said that by the order of magnitude analysis, the Navier-Stokes equations are 
simplified into equations given below.
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(28.10) 

 





 (28.12) 

 These are known as Prandtl's boundary-layer equations. 

The available boundary conditions are:

 

Solid  

surface  

  

 

Outer edge of boundary-layer 
 

or  (28.14)  

 

The unknown pressure p in the x-momentum equation can be determined from 
Bernoulli's Eq. (28.9), if the inviscid velocity distribution U(x) is also known.
We solve the Prandtl boundary layer equations for  and  with U obtained 

from the outer inviscid flow analysis. The equations are solved by commencing at the leading 

edge of the body and moving downstream to the desired locationit allows the no-slip boundary 

condition to be satisfied which constitutes a significant improvement over the potential flow 

analysis while solving real fluid flow problems. 

The Prandtl boundary layer equations are thus a simplification of the Navier-Stokes 

equations. 

Boundary Layer Coordinates 

The boundary layer equations derived are in Cartesian coordinates.
The Velocity components u and v represent x and y direction velocities respectively.
For objects with small curvature, these equations can be used with -x coordinate : streamwise 

direction y coordinate : normal component
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 y coordinate : normal component

They are called Boundary Layer Coordinates.
Application of Boundary Layer Theory 

The Boundary-Layer Theory is not valid beyond the point of separation.

At the point of separation, boundary layer thickness becomes quite large for the thin layer 
approximation to be valid.

It is important to note that boundary layer theory can be used to locate the point of 
seperation itself.

In applying the boundary layer theory although U is the free-stream velocity at the outer 

edge of the boundary layer, it is interpreted as the fluid velocity at the wall calculated 
from inviscid flow considerations ( known as Potential Wall Velocity)

Mathematically, application of the boundary - layer theory converts the character of 
governing Navier-Stroke equations from elliptic to parabolic

This allows the marching in flow direction, as the solution at any location is independent of 
the conditions farther downstream 

Blasius Flow Over A Flat Plate 

The classical problem considered by H. Blasius was 

Two-dimensional, steady, incompressible flow over a flat plate at zero angle of incidence 

with respect to the uniform stream of velocity  .The fluid extends to infinity in all 

directions from the plate.The physical problem is already illustrated in Fig. 28.1 

Blasius wanted to determinethe velocity field solely within the boundary layer,the boundary 

layer thickness  ,the shear stress distribution on the plate, andthe drag force on the 

plate.The Prandtl boundary layer equations in the case under consideration are 

 

 

 

 

 

(28.15) 
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The boundary conditions are 

 
        

         

   

   Note that the substitution of the term in the original boundary layer 

   momentum equation in terms of the free stream velocity 

   produces which is equal to zero.     

 

 Hence the governing Eq. (28.15) does not contain any pressure-gradient term. 
 

  However, the characteristic parameters of this problem arethat 

  is, 

  This relation has five variables. 

 

 It involves two dimensions, length and time. 
 

 Thus it can be reduced to a dimensionless relation in terms of (5-2) =3 
quantities ( Buckingham Pi Theorem) 

 

 Thus a similarity variables can be used to find the solution  
Such flow fields are called self-similar flow field . 

 

Law of Similarity for Boundary Layer Flows 
 

It states that the u component of velocity with two velocity profiles of u(x,y) at different x 

locations differ only by scale factors in u and y .Therefore, the velocity profiles u(x,y) at all 

values of x can be made congruent if they are plotted in coordinates which have been made 

dimensionless with reference to the scale factors.The local free stream velocity U(x) at section x 

is an obvious scale factor for u, because the dimensionless u(x) varies between zero and unity 

with y at all sections.The scale factor for y , denoted by g(x) , is proportional to the local 

boundary layer thickness so that y itself varies between zero and unity.Velocity at two arbitrary x 

locations, namely x1 and x2 should satisfy the equation

Now, for Blasius flow, it is possible to identify g(x) with the boundary layers thickness δ 
we know 
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Thus in terms of x we get 

 

i.e., 

 

 

 

 

 

 

where  or 

more precisely, 

 

 

 

 

(28.19) 

 
 

 

 

 

 

 

 

The stream function can now be obtained in terms of the velocity components as 

or (28.20)  
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where D is a constant. Also  and the constant of integration is zero if 

the stream function at the solid surface is set equal to zero. 

Now, the velocity components and their derivatives are: 

 

 

 

(28.21a) 
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and 

 

This is known as Blasius Equation . 

Contd. from Previous Slide 

 

The boundary conditions as in Eg. (28.16), in combination with Eg. (28.21a) and 
(28.21b) become 

 

at  , therefore 

 

        

  

at therefore 

    

   

(28.23) 
  

       

        

        

        

 

Equation (28.22) is a third order nonlinear differential equation . 

 

 

 Blasius obtained the solution of this equation in the form of series expansion 
through analytical techniques

 We shall not discuss this technique. However, we shall discuss a numerical 

technique to solve the aforesaid equation which can be understood rather 
easily.

 Note that the equation for  does not contain  .

 Boundary conditions at  and  merge into the

condition  . This is the key feature of 

similarity solution. 
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 We can rewrite Eq. (28.22) as three first order differential equations in the 
following way 

 

 (28.24a)  

 

 (28.24b)  

 

 

 (28.24c)  

Let us next consider the boundary conditions. 

 

 The condition  remains valid. 

 The condition  means that  . 

 The condition   gives us  .  

 

Note that the equations for f and G have initial values. However, the value for H(0) is 
not known. Hence, we do not have a usual initial-value problem. 

 

Shooting Technique 

 

We handle this problem as an initial-value problem by choosing values of  and 

 

solving by numerical methods  , and  . 

 

In general, the condition  will not be satisfied for the function  arising from the 

numerical solution. 

 

We then choose other initial values of  so that eventually we find an  which 

results in  . 

 

This method is called the shooting technique . 
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 In Eq. (28.24), the primes refer to differentiation wrt. the similarity variable  

. The integration steps following Runge-Kutta method are given below. 

 

 

(28.25a) 

 

 

(28.25b) 

 

 

 (28.25c) 

 

One moves from  to  . A fourth order accuracy is preserved

if h is constant along the integration path, that is,  for all 

values ofn . The values of k, l and m are as follows. 

 For generality let the system of governing equations be 
 

 

 

 

In a similar way K3, l3, m3 and k4, l4, m4 mare calculated following standard formulae 

for the Runge-Kutta integration. For example, K3 is given by 

 

 

The functions F1, F2and 

F3 are G, H , - f H / 2 respectively. Then at a distance  from the wall, we have 
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   Next we repeat the same calculation as above by using and the better of 

 the two initial values of . Thus we get another improved value . 

 This process may continue, that is, we use and as a pair of values 

 to find more improved values for , and so forth. The better guess for H 

 (0) can also be obtained by using the Newton Raphson Method. It should be  

 always kept in mind that for each value of , the curve versus is 

 to be examined to get the proper value of .   

   The functions and  are plotted in Fig. 28.3.The  

 

velocity components, u and v inside the boundary layer can be computed from 
Eqs (28.21a) and (28.21b) respectively. 

 

 A sample computer program in FORTRAN follows in order to explain the 
solution procedure in greater detail. The program uses Runge Kutta integration 
together with the Newton Raphson method 
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Fig 28.2 Correcting the initial guess for H(O) 
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 Measurements to test the accuracy of theoretical results were carried out by 
many scientists. In his experiments, J. Nikuradse, found excellent agreement

with the theoretical results with respect to velocity distribution  

within the boundary layer of a stream of air on a flat plate. 

 In the next slide we'll see some values of the velocity profile

shape  and  in tabular format. 

 

 

Values of the velocity profile shape  
 

Table 28.1 The Blasius Velocity Profile  
 

           

           

           

           

           

  0  0  0  0.33206   

           

  0.2  0.00664  0.006641  0.33199   

           

  0.4  0.02656  0.13277  0.33147   

           

  0.8  0.10611  0.26471  0.32739   

           

  1.2  0.23795  0.39378  0.31659   

           

  1.6  0.42032  0.51676  0.29667   

           

  2.0  0.65003  0.62977  0.26675   

           

  2.4  0.92230  0.72899  0.22809   
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  2.8  1.23099  0.81152  0.18401   

           

  3.2  1.56911  0.87609  0.13913   

           

  3.6  1.92954  0.92333  0.09809   

           

  4.0  2.30576  0.95552  0.06424   

           

  4.4  2.69238  0.97587  0.03897   

           

  4.8  3.08534  0.98779  0.02187   

           

  5.0  3.28329  0.99155  0.01591   

           

  8.8  7.07923  1.00000  0.00000   
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Wall Shear Stress 
 

 

 With the profile known, wall shear can be evaluated as 

 

 

 

 

 

 

Now, 

 

 

 

or 

 

from Table 28.1 

 

 

 

 

 

(29.1a) 

(Wall Shear Stress) 
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and the local skin friction coefficient is 

 

 

 Substituting from (29.1a) we get 

 

 

 

 

(Skin Friction Coefficient) 

 

 

In 1951, Liepmann and Dhawan , measured the shearing stress on a flat plate directly. 
Their results showed a striking confirmation of Eq. (29.1).

 Total frictional force per unit width for the plate of length L is 

 

 

 

 

 

 

or 

 

 

 

 

 

or 

 

 

 

(29.2) 
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and the average skin friction coefficient is 

 

 

 

          where,  . 

 

For a flat plate of length L in the streamwise direction and width w perpendicular to the 

flow, the Drag D would be  

 

 

 

Boundary Layer Thickness 

  Since  , it is customary to select the boundary layer 

  thickness    as that point where approaches 0.99. 

  From Table 28.1, reaches 0.99 at η= 5.0 and we can 

 

 

 

 

write 

 

 

 

 

(29.5) 

 

 However, the aforesaid definition of boundary layer thickness is somewhat 

arbitrary, a physically more meaningful measure of boundary layer estimation is 
expressed through displacement thickness . 
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Fig. 29.1 (Displacement thickness) (b) Momentum thickness 

 Displacement thickness  : It is defined as the distance by which the 

external potential flow is displaced outwards due to the decrease in velocity in 

the boundary layer. 

 

 

 

 

 

(29.6) 

Therefore, 
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Substituting the values of  and  from Eqs (28.21a) and (28.19) into Eq.(29.6), 

we obtain
Following the analogy of the displacement thickness, a momentum thickness may be 
defined. 

Momentum thickness (  ): It is defined as the loss of momentum in the boundary 

layer as compared with that of potential flow. Thus 

 

 

 

 

 

 

With the substitution of  and  from Eg. (28.21a) and (28.19), we can evaluate 

numerically the value of  for a flat plate as 

 

 

 

 

 

 

The relationships between  have been shown in Fig. 29.1. 

Momentum-Integral Equations For The Boundary Layer 

 

To employ boundary layer concepts in real engineering designs, we need approximate methods 

that would quickly lead to an answer even if the accuracy is somewhat less.

Karman and Pohlhausen devised a simplified method by satisfying only the boundary 

conditions of the boundary layer flow rather than satisfying Prandtl's differential equations for 

each and every particle within the boundary layer. We shall discuss this method herein.

Consider the case of steady, two-dimensional and incompressible flow, i.e. we shall refer to Eqs 

(28.10) to (28.14). Upon integrating the dimensional form of Eq. (28.10) with respect to y = 0 
(wall) to y = δ (where δ signifies the interface of the free stream and the boundary layer), we 
obtain 

 

 

 



127 

 

 

 




The second term of the left hand side can be expanded as 

 

 

 

 

 

or, by continuity equation 

 

 

 

29.11 

Substituting Eq. (29.11) in Eq. (29.10) we obtain 

 

 

(29.12) 

Substituting the relation between  and the free stream velocity  for the inviscid 

zone in Eq. (29.12) we get
which is reduced to 
 

 

Since the integrals vanish outside the boundary layer, we are allowed to increase the
integration limit to infinity (i.e . ) 
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Substituting Eq. (29.6) and (29.7) in Eq. (29.13) we obtain 
 

 

 

where is the displacement thickness 

 

                                                                   is momentum thickness 

 

Equation (29.14) is known as momentum integral equation for two dimensional 
incompressible laminar boundary layer. The same remains valid for turbulent boundary layers 
as well. 

Needless to say, the wall shear stress  will be different for laminar and turbulent flows. 

The term  signifies space-wise acceleration of the free stream. Existence of this 

term means that free stream pressure gradient is present in the flow direction.

For example,  we get finite value of  outside the boundary layer in the 

entranceregion of a pipe or a channel. For external flows, the existence of  

depends on the shape of the body.

During the flow over a flat plate,  and the momentum integral equation is 

reduced to 

 

 

Seperation of Boundary Layer 

It has been observed that the flow is reversed at the vicinity of the wall under certain 
conditions
The phenomenon is termed as separation of boundary layer.
Separation takes place due to excessive momentum loss near the wall in a boundary layer 

trying to move downstream against increasing pressure, i.e.,  , which is called 

adverse pressure gradient.
Figure 29.2 shows the flow past a circular cylinder, in an infinite medium.

 Up to  , the flow area is like a constricted passage and the 

flow behaviour is like that of a nozzle.  
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Beyond  the flow area is diverged, therefore, the flow behaviour is much similar to a 

diffuser 

This dictates the inviscid pressure distribution on the cylinder which is shown by a firm line in 
Fig. 29.2. 

             Here 

 

: pressure in the free stream 
 

                      : velocity in the free stream and 
 

                      : is the local pressure on the cylinder. 

Consider the forces in the flow field. In the 

inviscid region,
Until  the pressure force and the force due to streamwise acceleration i.e. inertia 

forces are acting in the same direction (pressure gradient being negative/favourable)  

Beyond  , the pressure gradient is positive or adverse. Due to the adverse pressure 

gradient the pressure force and the force due to acceleration will be opposing each other in the in 

viscid zone of this part. 

So long as no viscous effect is considered, the situation does not cause any sensation. In the 
viscid region (near the solid boundary), 

Up to  , the viscous force opposes the combined pressure force and the force due to 

acceleration. Fluid particles overcome this viscous resistance due to continuous conversion 

of pressure force into kinetic energy. 

Beyond  , within the viscous zone, the flow structure becomes different. It is seen 

that the force due to acceleration is opposed by both the viscous force and pressure force. 

Depending upon the magnitude of adverse pressure gradient, somewhere
around  , the fluid particles, in the boundary layer are separated from the wall 

and driven in the upstream direction. However, the far field external stream pushes back these 

separated layers together with it and develops a broad pulsating wake behind the cylinder. 

The mathematical explanation of flow-separation : The point of separation may be defined 

as the limit between forward and reverse flow in the layer very close to the wall, i.e., at the 
point of separation 

 

 

(29.16) 

This means that the shear stress at the wall,  . But at this point, the adverse pressure 

continues to exist and at the downstream of this point the flow acts in a reverse direction 

resulting in a back flow. 
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We can also explain flow separation using the argument about the second derivative of 
velocity u at the wall. From the dimensional form of the momentum at the wall, where u 
= v = 0, we can write 

 

Consider the situation due to a favourable pressure gradient where  we have,

1.    . (From Eq. (29.17)) 

As we proceed towards the free stream, the 

velocity u approaches  asymptotically, so  decreases at a continuously 

lesser rate in ydirection.This means that  remains less than zero near the 

edge of the boundary layer.The curvature of a velocity profile  is always 

negative as shown in (Fig. 29.3a)Consider the case of adverse pressure gradient, 

At the boundary, the curvature of the profile must be positive (since 

 ).Near the interface of boundary layer and free stream the previous 

argumentregarding  and  still holds good and the curvature is negative.Thus 

we observe that for an adverse pressure gradient, there must exist a pointfor which 

 . This point is known as point of inflection of the velocity profile in the 

boundary layer as shown in Fig. 29.3bHowever, point of separation means 

 at the wall.  at the wall since separation can only occur due 

to adverse pressure gradient. But we have already seen that at the edge of the 

boundary 
 

layer,  . It is therefore, clear that if there is a point of separation, there must 

exist a point of inflection in the velocity profile. 

 

 

 

 

 

 

 

 

            

 

 

                        Fig. 29.3 Velocity distribution within a boundary layer 
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      Favourable pressure gradient, adverse pressure gradient, 

Let us reconsider the flow past a circular cylinder and continue our discussion on the wake 

behind a cylinder. The pressure distribution which was shown by the firm line in Fig. 
21.5 is obtained from the potential flow theory. However. somewhere  

near  (in experiments it has been observed to be at ) . the boundary layer 

detaches itself from the wall. 

Meanwhile, pressure in the wake remains close to separation-point-pressure since the 
eddies (formed as a consequence of the retarded layers being carried together with the 
upper layer through the action of shear) cannot convert rotational kinetic energy into 

pressure head. The actual pressure distribution is shown by the dotted line in Fig. 29.3.  

Since the wake zone pressure is less than that of the forward stagnation  

point (pressure at point A in Fig. 29.3), the cylinder experiences a drag force which 
is basically attributed to the pressure difference. 

The drag force, brought about by the pressure difference is known as form 

drag whereas the shear stress at the wall gives rise to skin friction drag.Generally, 
these two drag forces together are responsible for resultant drag on a body 

 

Karman-Pohlhausen Approximate Method For Solution Of Momentum Integral 
Equation Over A Flat Plate 

 

 The basic equation for this method is obtained by integrating the x direction 
momentum equation (boundary layer momentum equation) with respect

to y from the wall (at y = 0) to a distance  which is assumed to be 

outside the boundary layer. Using this notation, we can rewrite the Karman 

momentum integral equation as 

 

 

 

 The effect of pressure gradient is described by the second term on the left 
hand side. For pressure gradient surfaces in external flow or for the developing 

sections in internal flow, this term contributes to the pressure gradient. 
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 We assume a velocity profile which is a polynomial of  .  being a 

 

form of similarity variable , implies that with the growth of boundary layer as distance 

x varies from the leading edge, the velocity 

 

profile  remains geometrically similar.We choose a velocity profile in the form 

 

 (30.2) 

In order to determine the constants  we shall prescribe the following 

boundary conditions 

 

 

 

(30.3a) 

 

 

 

(30.3b) 

 

 

 

 at
 

 

30.3c) 

 

 

            Finally, we obtain the following values for the coefficients in Eq. (30.2), 
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 and the velocity profile becomes 

 (30.4)For flow 

over a flat plate,  and the governing Eq. (30.1) reduces to 

 

 

 

(30.5) 

 

Again from Eq. (29.8), the momentum thickness is 

 

 

 

 

 

 

The wall shear stress is given by 

 

 

  

 

 

Substituting the values of  and  in Eq. (30.5) we get, 
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0.6) 

where C1 is any arbitrary unknown constant. 

 

 

 The condition at the leading edge (  ) yields 

 Finally we obtain, 

 

 

(30.7) 

 

 

 

 

 

 

 This is the value of boundary layer thickness on a flat plate. Although, the 

method is an approximate one, the result is found to be reasonably accurate. 
The value is slightly lower than the exact solution of laminar flow over a flat 

plate . As such, the accuracy depends on the order of the velocity profile. 

We could have have used a fourth order polynomial instead -- 

(30.9)  

 

 

 In addition to the boundary conditions in Eq. (30.3), we shall require another 
boundary condition at 

 

 

 

This yields the constants as  . Finally the velocity 

profile will be
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Subsequently, for a fourth order profile the growth of boundary layer is given by 

 

 

  Integral Method For Non-Zero Pressure Gradient Flows 

A wide variety of "integral methods" in this category have been discussed by Rosenhead . 

The Thwaites method is found to be a very elegant method, which is an extension of the 
method due to Holstein and Bohlen . We shall discuss the Holstein-Bohlen method in 

this section.

This is an approximate method for solving boundary layer equations for two-

dimensional generalized flow. The integrated Eq. (29.14) for laminar flow with 

pressure gradient can be written as 

 

 

 

(30. 

 

The velocity profile at the boundary layer is considered to be a fourth-order

polynomial in terms of the dimensionless distance , and is expressed as 

 

 

The boundary conditions are 

 

 

 

 

A dimensionless quantity, known as shape factor is introduced as


 (30.12) 

The following relations are obtained
 

Now, the velocity profile can be expressed as 
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wher 

 

The shear stress  is given by 

 

 

(30.14) 

We use the following dimensionless parameters, 

 

 

(30.15) 

 

 

The integrated momentum Eq. (30.10) reduces to 

 

 

 

 


The parameter L is related to the skin friction
The parameter K is linked to the pressure gradient.

If we take K as the independent variable . L and H can be shown to be the functions of 
K since
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 (30.20) 

Therefore, 

 

 

 

 

The right-hand side of Eq. (30.18) is thus a function of K alone. Walz pointed out that this 
function can be approximated with a good degree of accuracy by a linear function of K so 
that 

 

[Walz's approximation] 

Equation (30.18) can now be written as 

 

 

Solution of this differential equation for the dependent variable  subject to 

the boundary condition U = 0 when x = 0 , gives 

 
 

 

 
With a = 0.47 and b = 6. the approximation is particularly close between the 
stagnation point and the point of maximum velocity.

Finally the value of the dependent variable is 

 

 

(30.22) 

By taking the limit of Eq. (30.22), according to L'Hopital's rule, it can be shown that 

 

This corresponds to K = 0.0783. 
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Note that  is not equal to zero at the stagnation point. If  is determined 

from Eq. (30.22), K(x) can be obtained from Eq. (30.16).
Table 30.1 gives the necessary parameters for obtaining results, such as velocity profile

and shear stress  The approximate method can be applied successfully to a wide range of 

problems. 

Table 30.1 Auxiliary functions after Holstein and Bohlen 
 

       

  K     

       

12  0.0948 2.250  0.356  

       

10  0.0919 2.260  0.351  

       

8  0.0831 2.289  0.340  

       

7.6  0.0807 2.297  0.337  

       

7.2  0.0781 2.305  0.333  

       

7.0  0.0767 2.309  0.331  

       

6.6  0.0737 2.318  0.328  

       

       

6.2  0.0706 2.328  0.324  

       

5.0  0.0599 2.361  0.310  

3.0  0.0385 2.427  0.283  

       

1.0  0.0135 2.508  0.252  

       

0  0 2.554  0.235  

       



139 

 

 
 

 

 

 

 

 

 

 
 

 

 

As mentioned earlier, K and  are related to the pressure gradient and the shape factor.

Introduction of K and  in the integral analysis enables extension of Karman-Pohlhausen 

method for solving flows over curved geometry. However, theanalysis is not valid for

the geometries, where  and  

Point of Seperation 
 

 

         For point of seperation 

  

    TURBULENT FLOW 

Introduction 

The turbulent motion is an irregular motion.
Turbulent fluid motion can be considered as an irregular condition of flow in which 
various quantities (such as velocity components and pressure) show a random 

variationwith time and space in such a way that the statistical average of those quantities 

can be quantitatively expressed.
It is postulated that the fluctuations inherently come from disturbances (such as 
roughness of a solid surface) and they may be either dampened out due to viscous 
damping or may grow by drawing energy from the free stream.
At a Reynolds number less than the critical, the kinetic energy of flow is not enough to sustain 
the random fluctuations against the viscous damping and in such caseslaminar flow continues to 
exist.
At somewhat higher Reynolds number than the critical Reynolds number, the kinetic energy 

of flow supports the growth of fluctuations and transition to turbulencetakes place. 

-1  -0.0140 2.604  0.217  

       

-3  -0.0429 2.716  0.179  

       

-5  -0.0720 2.847  0.140  
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Characteristics Of Turbulent Flow 
 

 

 The most important characteristic of turbulent motion is the fact that velocity 
and pressure at a point fluctuate with time in a random manner. 

 

 

 

 

  

 

 

 

Fig. 32.1 Variation of horizontal components of velocity for laminar and turbulent 
flows at a point P 

The mixing in turbulent flow is more due to these fluctuations. As a result we can see 
more uniform velocity distributions in turbulent pipe flows as compared to the laminar 
flows . 

Fig. 32.2 Comparison of velocity profiles in a pipe for (a) laminar and (b) 
turbulent flows 

Turbulence can be generated by -
frictional forces at the confining solid walls 

the flow of layers of fluids with different velocities over one another 

The turbulence generated in these two ways are considered to be different. 

Turbulence generated and continuously affected by fixed walls is designated as wall turbulence , and 

turbulence generated by two adjacent layers of fluid in absence of walls is termed as free turbulence . 

One of the effects of viscosity on turbulence is to make the flow more homogeneous and less 

dependent on direction. 

Turbulence can be categorised as below -
Homogeneous Turbulence: 
 Turbulence has the same structure quantitatively in all parts of the flow field.

Isotropic Turbulence: 
 The statistical features have no directional preference and perfect disorder persists.

Anisotropic Turbulence:  
The statistical features have directional preference and the mean velocity has a gradient.
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Homogeneous Turbulence : The term homogeneous turbulence implies that the velocity 

fluctuations in the system are random but the average turbulent characteristics are 
independent of the position in the fluid, i.e., invariant to axis translation.
Consider the root mean square velocity fluctuations 

, ,  

In homogeneous turbulence, the rms values of u', v' and w' can all be different, but each value 

must be constant over the entire turbulent field. Note that even if the rms fluctuation of any 

component, say u' s are constant over the entire field the instantaneous values of u necessarily 

differ from point to point at any instant. 

Isotropic Turbulence: The velocity fluctuations are independent of the axis of reference, 

i.e. invariant to axis rotation and reflection. Isotropic turbulence is by its definition always 

homogeneous . In such a situation, the gradient of the mean velocity does not exist, the 
mean velocity is either zero or constant throughout.
In isotropic turbulence fluctuations are independent of the direction of reference and 

          = =  or 

 

It is re-emphasised that even if the rms fluctuations at any point are same, 
their instantaneous values necessarily differ from each other at any instant. 

Turbulent flow is diffusive and dissipative . In general, turbulence brings about better mixing of 

a fluid and produces an additional diffusive effect. Such a diffusion is termed as "Eddy-diffusion 

".( Note that this is different from molecular diffusion) At a large Reynolds number there exists a 

continuous transport of energy from the free stream to the large eddies. Then, from the large 

eddies smaller eddies are continuously formed. Near the wall smallest eddies destroy themselves 

in dissipating energy, i.e., converting kinetic energy of the eddies into intermolecular energy.

Laminar-Turbulent Transition 

For a turbulent flow over a flat plate



 

 

 

The turbulent boundary layer continues to grow in thickness, with a small region below it called 

a viscous sublayer. In this sub layer, the flow is well behaved,just as the laminar boundary layer 

(Fig. 32.3 Fig. 32.3 Laminar - turbulent transition 
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Illustration 

 

 

 

 

                (Fig. 32.3 Fig. 32.3 Laminar - turbulent transition 

  Observe that at a certain axial location, the laminar boundary layer tends to become unstable. 

Physically this means that the disturbances in the flow grow in amplitude at this location.Free 

stream turbulence, wall roughness and acoustic signals may be among the sources of such 

disturbances.  

Transition to turbulent flow is thus initiated with the instability in laminar 

flowThe possibility of instability in boundary layer was felt by Prandtl as early as 1912.The 
theoretical analysis of Tollmien and Schlichting showed that unstable waves could exist if the 
Reynolds number was 575. 

The Reynolds number was defined as 

 

where  is the free stream velocity ,  is the displacement thickness and  is the kinematic 

viscosity . 

Taylor developed an alternate theory, which assumed that the transition is caused by a momentary 

separation at the boundary layer associated with the free stream turbulence. In a pipe flow the 

initiation of turbulence is usually observed at Reynolds numbers ( 

 )in the range of 2000 to 2700. 

The development starts with a laminar profile, undergoes a transition, changes over to turbulent 

profile and then stays turbulent thereafter (Fig. 32.4). The length of development is of the order 

of 25 to 40 diameters of the pipe. 

Fig. 32.4 Development of turbulent flow in a circular duct 
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 Fig. 32.4 Development of turbulent flow in a circular duct 

 

Fully Developed Turbulent Flow In A Pipe For Moderate Reynolds Numbers 

 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 

 
The entry length of a turbulent flow is much shorter than that of a laminar flow, J. Nikuradse 

determined that a fully developed profile for turbulent flow can be observed after an entry 
length of 25 to 40 diameters. We shall focus to fully developed turbulent flow in this section.

Considering a fully developed turbulent pipe flow (Fig. 34.3) we can write 
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 (34.18) 

 

 

 

                    Fig. 34.3 Fully developed turbulent pipe flow 

It can be said that in a fully developed flow, the pressure gradient balances the wall shear stress 

only and has a constant value at any . However, the friction factor ( Darcy friction factor ) is 

defined in a fully developed flow as 

 

 

 

        Comparing Eq.(34.19) with Eq.(34.20), we can write 

 

 

 

H. Blasius conducted a critical survey of available experimental results and established 
the empirical correlation for the above equation as 

 

  

where 

(34.22) 

 

 

It is found that the Blasius's formula is valid in the range of Reynolds number of Re ≤105
. At the 

time when Blasius compiled the experimental data, results for higher Reynolds numbers were not 
available. However, later on, J. Nikuradse carried out experiments with the laws of friction in a very 

wide range of Reynoldsnumbers, 4 x 10
3
 ≤ Re ≤ 3.2 x

10
6
. The velocity profile in this range follows: 

 

 

 

 (34.23) 

where  is the time mean velocity at the pipe centre and  is the distance from the wall . 

The exponent n varies slightly with Reynolds number. In the range of Re ~ 10
5
, n is 7. 
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Fully Developed Turbulent Flow In A Pipe For Moderate Reynolds Numbers 
 

 

 The ratio of  and  for the aforesaid profile is found out by considering 

the volume flow rate Q as 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From equation (34.23) 
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Now, for different values of n (for different Reynolds numbers) we shall obtain

different values of  from Eq.(34.24a). On substitution of Blasius 

resistance formula (34.22) in Eq.(34.21), the following expression for the shear 

stress at the wall can be obtained. 

 

 

 

 

putting  

 

 

and where 

 

 

 

 

 

 

 

 

For n=7,  becomes equal to 0.8. substituting  in the above equation, 

we get 
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Finally it produces 

 

 

 

 

 

 

 

where  is friction velocity. However,  may be spitted into  and  and we 

obtain 

 

 

 

 

 

 

Now we can assume that the above equation is not only valid at the pipe axis (y = 

R) but also at any distance from the wall y and a general form is proposed as 

 

 

Concluding Remarks : 

It can be said that (1/7)th power velocity distribution law (24.38b) can be derived 
from Blasius's resistance formula (34.22) .  

Equation (34.24b) gives the shear stress relationship in pipe flow at a moderate  

Reynolds number, i.e  . Unlike very high Reynolds number flow, here laminar 

effect cannot be neglected and the laminar sub layer brings about remarkable influence on 

the outer zones.The friction factor for pipe flows, , defined by Eq. (34.22) is valid for a 

specific range of Reynolds number and for a particular surface condition. 
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Concept of Friction Factor in a pipe flow: 

The friction factor in the case of a pipe flow was already mentioned in lecture 26.
We will elaborate further on friction factor or friction coefficient in this section.
Skin friction coefficient for a fully developed flow through a closed duct is defined as 

 

 

where, V is the average velocity of flow given by , Q and A are the volume flow 

rate through the duct and the cross-sectional area of the duct respectively.From a force 

balance of a typical fluid element (Fig. 35.1) in course of its flow through a duct of constant 

cross-sectional area, we can write 

                        
 

 

 

 

 

FIG 35.1 Force Balance of a fluid element in the course of flow through a duct 

 

where,  is the shear stress at the wall and  is the piezometric pressure drop over a 

length of L . A and S are respectively the cross-sectional area and wetted perimeter of the duct. 

Substituting the expression (35.2) in Eq. (35.1), we have, 

 
 

 

  

(35.3) 

where,  and is known as the hydraulic diameter . 

In case of a circular pipe, Dh=D, the diameter of the pipe. The coefficient Cf defined by 

Eqs (35.1) or (35.3) is known as Fanning's friction factor . 

To do away with the factor 1/4 in the Eq. (35.3), Darcy defined a friction factor f 
(Darcy's friction factor) as 
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(35.4) 

Comparison of Eqs (35.3) and (35.4) gives . Equation (35.4) can be written for a pipe 

flow as 

 

 

Equation (35.5) is written in a different fashion for its use in the solution of pipe flow 
problems in practice as 

 

or in terms of head loss (energy loss per unit weight) 

 

 

(35.6b) 

 

where, hf represents the loss of head due to friction over the length L of the pipe.Equation 

(35.6b) is frequently used in practice to determine hf 

In order to evaluate hf, we require to know the value of f. The value of f can be 
determined from Moody's Chart.
 

Variation of Friction Factor 

In case of a laminar fully developed flow through pipes, the friction factor, f is found from the 

exact solution of the Navier-Stokes equation as discussed in lecture 26. It is given by f=64/R 

In the case of a turbulent flow, friction factor depends on both the Reynolds number and the 
roughness of pipe surface. 


Sir Thomas E. Stanton (1865-1931) first started conducting experiments on a number of pipes 

of various diameters and materials and with various fluids.Afterwards, a German engineer 

Nikuradse carried out experiments on flows through pipes in a very wide range of Reynolds 

number.

A comprehensive documentation of the experimental and theoretical investigations on the laws 
of friction in pipe flows has been presented in the form of a diagram, as shown in Fig. 35.2, by 

L.F. Moody to show the variation of friction factor, f with the pertinent governing parameters, 

namely, the Reynolds number of flow and the relativeroughness  of the pipe. This diagram 
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is known as Moody's Chart which is employed till today as the best means for predicting the 

values of f . 

 

 

 

 

 

 

 

 

Fig. 35.2 Friction Factors for pipes (adapted from Trans. ASME, 66,672, 1944) 

 

 

The friction factor f at a given Reynolds number, in the turbulent region, depends on the 
relative roughness, defined as the ratio of average roughness to the diameter of the pipe, rather 
than the absolute roughness.

For moderate degree of roughness, a pipe acts as a smooth pipe up to a value of Re where the 
curve of f vs Re for the pipe coincides with that of a smooth pipe. This zone is known as the 
smooth zone of flow . 

The region where f vs Re curves (Fig. 35.2) become horizontal showing that f is independent of 
Re, is known as the rough zone and the intermediate region between the smooth and rough 
zone is known as the transition zone.

The position and extent of all these zones depend on the relative roughness of the pipe. In the 
smooth zone of flow, the laminar sublayer becomes thick, and hence, it covers appreciably the 

irregular surface protrusions. Therefore all the curves for smooth flow coincide.

With increasing Reynolds number, the thickness of sublayer decreases and hence the surface 
bumps protrude through it. The higher is the roughness of the pipe, the lower is the value of 

Re at which the curve of f vs Re branches off from smooth pipe curve (Fig. 35.2).

In the rough zone of flow, the flow resistance is mainly due to the form drag of those 
protrusions. The pressure drop in this region is approximately proportional to the square of the 
average velocity of flow. Thus f becomes independent of Re in this region.
In practice, there are three distinct classes of problems relating to flow through a single pipe line 
as follows: 

The flow rate and pipe diameter are given. One has to determine the loss of head over a given 
length of pipe and the corresponding power required to maintain the flow over that length.  
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The loss of head over a given length of a pipe of known diameter is given. One has to find 
out the flow rate and the transmission of power accordingly.  

The flow rate through a pipe and the corresponding loss of head over a part of its length are 
given. One has to find out the diameter of the pipe. 
In the first category of problems, the friction factor f is found out explicitly from the given 

values of flow rate and pipe diameter. Therefore, the loss of head hf and the power required, P 
can be calculated by the straightforward application of Eq.(35.6b). 
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