

AVNIET-ECE-IV-I-SEM. i

 JNTU CODE: (EC604PC)

 Program: UG

DEPARTMENTOFELECTRONICS AND COMMUNICATIONENGINEERING

LABORATORY MANUAL

DIGITAL SIGNAL PROCESSING LAB

III Year B.Tech. ECE – II Sem

LAB INCHARGES HOD

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 2

Note: Minimum of 12 experiments has to be conducted (six from each part)

Vision and Mission of ECE Department:

Vision:

To impart quality technical education in Electronics and Communication Engineering

emphasizing analysis, design/synthesis and evaluation of hardware/embedded software

usingvarious Electronic Design Automation (EDA) tools with accent on creativity,

innovation and research thereby producing competent engineers who can meet global

challenges with societal commitment.

Mission:

i. To impart quality education in fundamentals of basic sciences, mathematics, electronics

and communication engineering through innovative teaching-learning processes.

ii. To facilitate Graduates define, design, and solve engineering problems in the field of

Electronics and Communication Engineering using various Electronic Design Automation

(EDA) tools.

iii. To encourage research culture among faculty and students thereby facilitating them to be

creative and innovative through constant interaction with R & D organizations and

Industry.

iv. To inculcate teamwork, imbibe leadership qualities, professional ethics and social

responsibilities in students and faculty.

Program Educational Objectives of B. Tech (ECE) Program :

I. To prepare students with excellent comprehension of basic sciences, mathematics and

engineering subjects facilitating them to gain employment or pursue postgraduate

studies with an appreciation for lifelong learning.

II. To train students with problem solving capabilities such as analysis and design with

adequate practical skills wherein they demonstrate creativity and innovation that

would enable them to develop state of the art equipment and technologies of

multidisciplinary nature for societal development.

III. To inculcate positive attitude, professional ethics, effective communication and

interpersonal skills which would facilitate them to succeed in the chosen profession

exhibiting creativity and innovation through research and development both as team

member and as well as leader.

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 3

Program Outcomes of B.Tech ECE Program:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex

engineering problems.

2. Identify, formulate, review research literature, and analyze complex engineering

problems reaching substantiated conclusions using first principles of mathematics,

natural sciences, and engineering sciences.

3. Design solutions for complex engineering problems and design system components or

processes that meet the specified needs with appropriate consideration for the public

health and safety, and the cultural, societal, and environmental considerations.

4. Use research-based knowledge and research methods including design of

experiments, analysis and interpretation of data, and synthesis of the information to

provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and

modern engineering and IT tools including prediction and modeling to complex

engineering activities with an understanding of the limitations.

6. Apply reasoning informed by the contextual knowledge to assess societal, health,

safety, legal and cultural issues and the consequent responsibilities relevant to the

professional engineering practice.

7. Understand the impact of the professional engineering solutions in societal and

environmental contexts, and demonstrate the knowledge of, and need for sustainable

development.

8. Apply ethical principles and commit to professional ethics and responsibilities and

norms of the engineering practice

9. Individual and team work: Function effectively as an individual, and as a member or

leader in diverse teams, and in multidisciplinary settings.

10. Communicate effectively on complex engineering activities with the engineering

community and with society at large, such as, being able to comprehend and write

effective reports and design documentation, make effective presentations, and give

and receive clear instructions.

11. Demonstrate knowledge and understanding of the engineering and management

principles and apply these to one‘s own work, as a member and leader in a team, to

manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to

engage in independent and life-long learning in the broadest context of technological

change.

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 4

DIGITAL SIGNAL PROCESSING LAB
B.Tech. III Year II Sem. L T P C

` 0 0 3 2

Note:

 The Programs shall be implemented in Software (Using MATLAB / Lab View / C

Programming/ Equivalent) and Hardware (Using TI / Analog Devices / Motorola /

Equivalent DSP processors).

 Minimum of 12 experiments to be conducted.

List of Experiments:

1. Generation of Sinusoidal Waveform / Signal based on Recursive Difference Equations

2. Histogram of White Gaussian Noise and Uniformly Distributed Noise.

3. To find DFT / IDFT of given DT Signal

4. To find Frequency Response of a given System given in Transfer Function/ Differential

 equation form.

5. Obtain Fourier series coefficients by formula and using FET and compare for half sine

 wave.

6. Implementation of FFT of given Sequence

7. Determination of Power Spectrum of a given Signal(s).

8. Implementation of LP FIR Filter for a given Sequence/Signal.

9. Implementation of HP IIR Filter for a given Sequence/Signal

10. Generation of Narrow Band Signal through Filtering

11. Generation of DTMF Signals

12. Implementation of Decimation Process

13. Implementation of Interpolation Process

14. Implementation of I/D Sampling Rate Converters

15. Impulse Response of First order and Second Order Systems.

* Additional Experiments

16. To find the Discrete Cosine Transform of image.

17. Verification of Linear and Circular Convolution of signals/ Sequences.

18. Develop an algorithm to implement A) Histogram equalization, B) Histogram

 specification. Of image

19. Read a 256x256 image. Do the following operations. A) Filtering using simple averaging

 masks, B) Median filtering C) Gaussian filtering D) Triangular filtering (Pyramidal

 filter, cone filter) E) Compare your results

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 5

EXP.NO: 1

GENERATE SINUSOIDAL WAVEFORM BASED ON RECURSIVE

DIFFERENCE EQUATIONS

Aim: Generation of Sinusoidal waveform / signal based on recursive difference equations

EQUIPMENT: PC with windows (95/98/XP/NT/2000).

MATLAB Software

THEORY: For the given difference equation, a sinusoidal signal/sequence is applied as the

input. Using the given initial conditions, the sinusoidal response of the given discrete system

is to be computed.

1. The difference equation is y(n)=x(n)+y(n-1), which is a first order system, with the initial

condition y(-1)=4.

Program:
clc;

clear all;

close all;

a=input('enter the amplitude of the signal');

f=input('enter the frequency of the signal');

N=input('enter the number of cycles');

l=input('enter the intial condition y(-1)');

T=1/f;

t=0:1/100*T:N*T;

x=a*sin(2*pi*f*t);

y=zeros(1,length(t));

for i=1:1:length(x)

 y(i)=x(i)+l;

 l=y(i);

end;

subplot(2,1,1);

plot(t,x);

xlabel('timet');

ylabel('amplitude');

title('sine signal ');

subplot(2,1,2);

plot(t,y);

xlabel('timet');

ylabel('amplitude');

title(' sine signal generated by recursive equation');

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 6

OUTPUT

enter the amplitude of the signal5

enter the frequency of the signal200

enter the number of cycles5

enter the intial condition y(-1)0

RESULT

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 7

EXP.NO: 2

HISTOGRAM OF WHITE GAUSSIAN NOISE AND UNIFORMLY

DISTRIBUTED NOISE

Aim: To generate histogram of white Gaussian noise and uniformly distributed noise using

matlab software

EQUIPMENT: PC with windows (95/98/XP/NT/2000).

MATLAB Software

PROGRAM:

clc;
clear all;
close all;
l=10000;
mu=input('enter the mean value');
sigma=input('enter the standard deviation');
n=input('enter the number of bins');
x=sigma*randn(1,l)+mu;
y=sigma*rand(1,l)+mu;
[f1,x1]=hist(x,n);
[f2,y2]=hist(y,n);
subplot(2,2,1);
plot(x);
xlabel('time');
ylabel('amplitude');
title('white gaussian noise');
subplot(2,2,2);
bar(x1,f1);
xlabel('number of bars');
ylabel('probability of occurance');
title('histogram of white gaussian');
subplot(2,2,3);
plot(y);
xlabel('time');
ylabel('amplitude');
title('uniform distributed noise');
subplot(2,2,4);
bar(y2,f2);
xlabel('number of bars');
ylabel('probability of occurance');
title('histogram of uniformly distributed noise');

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 8

INPUTS:

Enter the mean value0

Enter the standard deviation2

Enter the number of bins30

OUTPUT

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 9

EXP.NO: 3

DFT/IDFT OF GIVEN DISCRETE TIME SIGNAL

AIM: To find DFT/IDFT of a given Discrete Time signal

EQUIPMENT: PC with windows (95/98/XP/NT/2000). MATLAB Software

THEORY: The discrete Fourier Transform of sequence is Periodic and we are interested in

frequency range 0 to 2π there are infinitely many ω in this range. If we use a digital computer

to compute N equally spaced points over the interval 0≤ ω<2π then the N points should be

located at ω k = (2π/N)k; k=0,1,2……,N-1;

These N equally space frequency samples of the DTFT are known as DFT denoted by X(k) is

 X(k) = X(e
jω

)| ω k = (2π/N)k ; 0≤k≤N-1.

The formulas for DFT and IDFT are

 DFT 0 ≤ k ≤ N-1.

 IDFT 0 ≤ n ≤ N-1.

For notation purpose = DFT []

 = IDFT []

PROGRAM:

%DFT function
clc;

clear all;

close all;

x=input('enter the values of input sequence');

N=input('enter the npoint dft values');

l=length(x);

if(N<l)

 error('N should be >=l');

end;

x1=[x zeros(1,(N-l))]

for k=0:1:N-1;

 for n=0:1:N-1;

 p=exp(-j*2*pi*n*k/N)

 x2(n+1,k+1)=p;

 end;

end;

y=(x1*x2);

psd=abs(y.*y)/N;

disp('the input sequence is:');

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 10

disp(x1);

disp('the thiddle factor matrix is:');

disp(x2);

disp('the dft of x(n) is');

disp(y);

magnitude=abs(y);

phase=angle(y);

subplot(2,1,1);

stem(magnitude);

xlabel('frequency');

ylabel('magnitude');

title('magnitude plot');

subplot(2,1,2);

stem(phase);

xlabel('frequency');

ylabel('phase');

title('phase plot');

OUTPUT: Enter the sequence:[1 1 2 3]

 Enter the value of N:4

The DFT of the given sequence is

 7.0000 -1.0000 + 2.0000i -1.0000 - 0.0000i -1.0000 - 2.0000i

The corresponding magnitude vector is

 7.0000 2.2361 1.0000 2.2361

The corresponding phase vector is

 0 116.5651 -180.0000 -116.5651

RESULT:

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 11

PROGRAM:

%IDFT function
clc;

clear all;

close all;

x=input('enter the values of input sequence');

N=input('enter the npoint dft values');

l=length(x);

if(N<l)

 error('N should be >=l');

end;

x1=[x zeros(1,(N-l))]

for k=0:1:N-1;

 for n=0:1:N-1;

 p=exp(j*2*pi*n*k/N)

 x2(n+1,k+1)=p;

 end;

end;

y=(1/N)*(x1*x2);

disp('the input sequence is:');

disp(x1);

disp('the thiddle factor matrix is:');

disp(x2);

disp('the idft of x(n) is');

disp(y);

magnitude=abs(y);

phase=angle(y);

subplot(2,1,1);

stem(magnitude);

xlabel('frequency');

ylabel('magnitude');

title('magnitude plot');

subplot(2,1,2);

stem(phase);

xlabel('frequency');

ylabel('phase');

title('phase plot');

OUTPUT:

Enter the sequence:[7.0000 -1.0000 + 2.0000i -1.0000 - 0.0000i -1.0000 - 2.0000i]

Enter the value of N:4

The DFT of the given sequence is

 1.0000 1.0000 + 0.0000i 2.0000 - 0.0000i 3.0000 - 0.0000i

The corresponding magnitude vector is

 1 1 2 3

The corresponding phase vector is

 1.0e-014 * 0 0.3836 -0.1754 -0.8607

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 12

RESULT:

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 13

EXP.NO: 4

FREQUENCY RESPONSE OF A GIVEN SYSTEM

AIM: To find frequency response of a given system given in (Transfer function/Difference

equation form)

EQUIPMENT: PC with windows (95/98/XP/NT/2000). MATLAB Software

PROGRAM:

clc;
clear all;
close all;
w=-pi:0.01:pi;
num=input('enter the numerator coefficient');
den=input('enter the denominator coefficient');
h=freqz(num,den,w);
magnitude=abs(h);
phase=angle(h);
subplot(2,1,1);
plot(w,magnitude);
xlabel('frequency');
ylabel('magnitude');
title('magnitude plot ');
subplot(2,1,2);
plot(w,phase);
xlabel('frequency');
ylabel('angle');
title('phase plot');

OUTPUT:
enter the numerator coefficient[1 3 4 5]

enter the denominator coefficient[3 -2 -6 7]

RESULT:

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 14

EXP.NO: 6

 IMPLEMENTATION OF FFT FOR A GIVEN SEQUENCE

AIM: To implement FFT of a given sequence.

EQUIPMENT: PC with windows (95/98/XP/NT/2000),MATLAB Software

THEORY:DFT of a sequence

 X[K] =   N

KnjN

K

enx







21

0

Where N= Length of sequence.

 K= Frequency Coefficient.

 n = Samples in time domain.

FFT : -Fast Fourier transformer .

There are Two methods.

1.Decimation in time (DIT FFT).

2. Decimation in Frequency (DIF FFT).

Why we need FFT ?

The no of multiplications in DFT = N
2.

The no of Additions in DFT = N(N-1).

For FFT.

The no of multiplication = N/2 log 2N.

The no of additions = N log2 N.

Program:

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 15

clc;

clear all;

close all;

x=input('enter the values of input sequence ');

N=input('enter the npoint fft values');

l=length(x);

if(N<l)

error('N should be >=l');

end;

x1=[x,zeros(1,(N-l))]

y=fft(x1,N)

magnitude=abs(y);

phase=angle(y);

disp('the input sequence x(n) is');

disp(x1);

disp('the fft of x1 is y');

disp(y);

subplot(2,1,1);

stem(magnitude);grid;

xlabel('frequency');

ylabel('magnitude');

title('magnitude plot');

subplot(2,1,2);

stem(phase);grid;

xlabel('frequency');

ylabel('phase');

title('phase plot');

 FFT INPUTS

enter the values of input sequence [1 2 3 4 5 6 7 8]

enter the npoint fft values8

the input sequence x(n) is

 1 2 3 4 5 6 7 8

the fft of x1 is y

 Columns 1 through 6

 36.0000 + 0.0000i -4.0000 + 9.6569i -4.0000 + 4.0000i -4.0000 + 1.6569i -4.0000 +

0.0000i -4.0000 - 1.6569i

 Columns 7 through 8

 -4.0000 - 4.0000i -4.0000 - 9.6569i

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 16

RESULT:

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 17

EXP.NO: 7

DETERMINATION OF POWER SPECTRUM OF A SIGNAL

AIM: To determine the power density spectrum of a given signal.

EQUIPMENT: PC with windows (95/98/XP/NT/2000), MATLAB Software

THEORY:

To compute PSD:The value of the auto-correlation function at zero-time equals the total

power in the signal. To compute PSD we compute the auto-correlation of the signal and then

take its FFT. The auto-correlation function and PSD are a Fourier transform pair. (Another

estimation method called ―period gram‖ uses sampled FFT to compute the PSD.).

E.g.: For a process x(n) correlation is defined as:

Power Spectral Density is a Fourier transform of the auto correlation.

PROGRAM:

clc;

close all;

clear all;

x=input('enter the sequence');

() { () ()}R E x n x n  

1

1
lim () ()

N

N
n

x n x n
N






 

1

1

1

ˆ() (()) lim ()

1
() (()) ()

2

N
j

N
N

j

S FT R R e

R FT S S e d







  

   






 



 

 





AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 18

N=length(x);

n=0:1:N-1;

y=xcorr(x,x);

subplot(3,1,1);

stem(n,x);

xlabel(' n----->');ylabel('Amplitude--->');

title('input seq');

subplot(3,1,2);

N=length(y);

n=0:1:N-1;

stem(n,y);

xlabel('n---->');ylabel('Amplitude----.');

title('autocorr seq for input');

disp('autocorr seq for input');

disp(y)

P=fft(y,N);

subplot(3,1,3);

stem(n,P);

xlabel('K----->');ylabel('Amplitude--->');

title('psd of input');

disp('the psd function:');

disp(P)

OUTPUT:

enter the values of input sequence [1 2 3 4 5 6 7 8]

enter the npoint fft values8

the input sequence x(n) is

 1 2 3 4 5 6 7 8

the psd of x1 is

 162.0000 13.6569 4.0000 2.3431 2.0000 2.3431 4.0000 13.6569

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 19

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 20

EXP.NO: 8

 IMPLEMENTATION OF LOW PASS FIR FILTER FOR A GIVEN

SEQUENCE/SIGNAL

AIM: To implement LP FIR for a given sequence.

EQUIPMENT:PC with windows (95/98/XP/NT/2000). MATLAB Software

PROGRAM:
clc;
clear all;
close all;
fs=200e3;
ts=1/fs;
t=0:ts:5e-3-ts;
f1=1e3;
f2=20e3;
f3=30e3;
y=5*sin(2*pi*f1*t)+9*sin(2*pi*f2*t)+8*sin(2*pi*f3*t);
nfft=length(y);
nfft2=2.^nextpow2(nfft);
fy=fft(y,nfft2);
fy1=fy(1:nfft2/2);
xfft=fs.*(0:nfft2/2-1)/nfft2;
cutoff=(1.2e3)/(fs/2);
order=60;
h=fir1(order,cutoff);
fh=fft(h,nfft2);
fh1=fh(1:nfft2/2);
fc=fy1.*fh1;
convolution=conv(y,h);
subplot(3,2,1);
plot(t,y);
xlabel('time');
ylabel('amplitude')
title('sinusoidal signal with multiple frequency components');
subplot(3,2,2);
plot(xfft,abs(fy1/max(fy1)));
xlabel('frequency');
ylabel('magnitude')
title('fft of input signal');
subplot(3,2,3);
stem(h);
xlabel('time');
ylabel('amplitude')
title('low pass filter with cutoff frequency=1.2khz');
subplot(3,2,4);
plot(xfft,abs(fh1/max(fh1)));
xlabel('frequency');
ylabel('magnitude')
title('fft of low pass filter');
subplot(3,2,5);
plot(convolution);
xlabel('time');
ylabel('amplitude')
title('o/p response of low pass filter');
subplot(3,2,6);
plot(xfft,abs(fc/max(fc)));

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 21

xlabel('frequency');
ylabel('magnitude')
title('o/p response of low pass filter in frequency domain');

RESULT:

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 22

EXP.NO: 9

 IMPLEMENTATION OF HIGH PASS FIR FILTER

AIM: To implement HP FIR for a given sequence.

EQUIPMENT: PC with windows (95/98/XP/NT/2000). MATLAB Software

PROGRAM:

%Implimentation of HP Fir filter for given sequence

clc

clear all

close all

b1=input('enter the sequence b1');

a1=[1];

w=0:.01:pi;

h1=freqz(b1,a1,w);

subplot(2,1,1);

plot(w/pi,abs(h1),'k');

xlabel('normalised frequency'), ylabel('magnitude');

title('magnitude response')

subplot(2,1,2);

plot(w/pi,angle(h1),'k');

xlabel('normalised frequency'), ylabel('phase angle in radians');

title('phase response')

RESULT: enter the sequence b1[.5 -.5]

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 23

EXP.NO: 10

GENERATION OF NARROW BAND SIGNAL THROUGH FILTERING

AIM: To implement LP IIR for a given sequence.

EQUIPMENT: PC with windows (95/98/XP/NT/2000). MATLAB Software

THEORY:An Infinite impulse response (IIR) filter possesses an output response to an

impulse which is of an infinite duration. The impulse response is "infinite" since there is

feedback in the filter, that is if you put in an impulse ,then its output must produced for

infinite duration of time. The IIR filter can realize both the poles and zeroes of a system

because it has a rational transfer function, described by polynomials in z in both the

numerator and the denominator:













N

k

k

k

M

k

k

k

Za

zb

zH

1

0)(
 (1)

The difference equation for such a system is described by the following:





N

k

k

M

k

k knyaknxbny
10

)()()((2)

M and N are order of the two polynomials bk and ak are the filter coefficients. These filter

coefficients are generated using FDS (Filter Design software or Digital Filter design

package).

PROGRAM:

clc;

clear all

close all

b1=input('enter the sequence');

%b1=[.2 .2];

a1=[1 -.6];

w=0:.01:pi;

h1=freqz(b1,a1,w);

subplot(2,2,1);

plot(w/pi,abs(h1),'k');

hold on

subplot(2,2,2);

plot(w/pi,20*log10(abs(h1)),'k');

hold on

subplot(2,1,2);

plot(w/pi,angle(h1),'k');

hold on

b2=[.05 .05];

a2=[1 -0.9];

w=0:.01:pi;

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 24

h2=freqz(b2,a2,w);

subplot(2,2,1);

plot(w/pi,abs(h2),'k-.');

xlabel('normalised frequency'), ylabel('magnitude');

title('Magnitude Response')

subplot(2,2,2);

plot(w/pi,20*log10(abs(h2)),'k-.');

xlabel('normalised frequency'), ylabel('magnitude in dB');

title('Magnitude Response in db')

subplot(2,1,2);

plot(w/pi,angle(h2),'k-.');

xlabel('normalised frequency'), ylabel('phase angle in radians');

title('Phase Response')

OUTPUT: enter the sequence [.2 .2]

RESULT:

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 25

EXP.NO: 11

 GENERATION OF DTMF SIGNALS

AIM: To generate DTMF signals

EQUIPMENT: PC with windows (95/98/XP/NT/2000). MATLAB Software

THEORY: Analog DTMF telephone signaling is based on encoding standard telephone

Keypad digits and symbols in two audible sinusoidal signals of frequencies FL and FH.

Thus the scheme gets its name as dual tone multi frequency (DTMF).

 Hz 12 09 1336 1477 1633

697

1

2

3

A

770

4

5

6

B

852

7

8

9

C

941 * 0 # D

 Each digit or symbol represented in figure 1 has 2 distinct high and low frequency

components. Thus each high-low frequency pair uniquely identifies the corresponding

telephone keypad digit or symbol. Each key pressed can be represented as a discrete time

signal of form

DTMF digit = row tone +columntone

dt[n] = sin[ωLn] + sin[ωLn] , 0 ≤ n ≤ N-1 (1)

 Where N is defined as number of samples taken. Typically in the sampling frequency used is

8khz. Thus if the two individual frequency components of the signal can be identified then the

number dialed can be decoded.

In this report we have used (dual tone and digit/symbols) interchangeably but both mean the

same. Dual tone means the encoded samples of the corresponding DTMF digits/symbols.

The DTMF encoder is implemented in MATLAB function dtmfe.m. The implementation is based

on a digital oscillator, that will generate sinusoidal tones at frequencies F
o

in response to an input

signal x[n] = δ[n].

Note :Implementation of DTMF Encoder

 x[n] H[n] y[n] {y[n] = x[n]*H[n]

 Consider a causal filter with

y(n) - 2*cos(2*pi * f *Ts)y(n-1) + y(n-2) =0*x(n) sin(f)x(n-1) + 0*x(n-2).

The impulse response of this system tells us that this indeed is a digital oscillator.

The H[n] is plotted and is sinusoidal and hence any input to this system will oscillate .

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 26

PROGRAM:

%Generation of DTMF signals

Fs = 8000; % Sampling frequency

Ts = 1/Fs;

Numof_samples =input('enter the no of samples');

dialnumber=input('enter the dial number');

T = Ts*(0:Numof_samples-1)';

switch dialnumber

case 0

 F1 = 941;

 F2 = 1336;

case 1

 F1 = 697;

 F2 = 1209;

case 2

 F1 = 697;

 F2 = 1336;

case 3

 F1 = 697;

 F2 = 1477;

case 'A'

 F1 = 697;

 F2 = 1633;

case 4

 F1 = 770;

 F2 = 1209;

case 5

 F1 = 770;

 F2 = 1336;

case 6

 F1 = 770;

 F2 = 1477;

case 'B'

 F1 = 770;

 F2 = 1633;

case 7

 F1 = 852;

 F2 = 1209;

case 8

 F1 = 852;

 F2 = 1336;

case 9

 F1 = 852;

 F2 = 1477;

case 'C'

 F1 = 852;

 F2 = 1633;

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 27

case '*'

 F1 = 941;

 F2 = 1209;

case '#'

 F1 = 941;

 F2 = 1477;

otherwise

 F1 = 941;

 F2 = 1633;

end;

firstsine = cos(2*pi*F1*T); % first sinusoidal signal

secondsine = cos(2*pi*F2*T); % second sinusoidal signal

d = firstsine + secondsine;

dtmfoutput = d ;

figure(1);

 title('THE DTMF OUTPUT');

 plot(dtmfoutput);

OUTPUT: enter the no of samples 128

 enter the dial number 3

RESULT:

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 28

EXP.NO: 12

 IMPLEMENTATION OF DECIMATION PROCESS

AIM: To implement decimation process.

EQUIPMENT:PC with windows (95/98/XP/NT/2000).MATLAB Software

THEORY: The sampling rate of a discrete time signal x(n) can be reduced by a factor M by

taking every M_th value of the signal the block diagram representation of the down sampler

is shown in figure below. The quadratic symbol in below figure with arrow pointing down

words is called a down sampler. The output signal y(n) is a down sampled signal of the input

signal x(n) and can be represented by

 y(n) = x(Mn)

 x(n) y(n) = x(Mn)

 fig: down sampler

 Let us assume the signal x(n) as shown in output figure. The down sampled signal x(n)

can be obtained by simply keeping every M_th sample and removing (M-1) in between

samples. This process is equal to reducing the sampling rate by a factor M.

PROGRAM:

%illustration of down sampling(decimation)

clear all;

N=50;

n=0:1:N-1;

x=sin(2*pi*n/20)+sin(2*pi*n/15);

M=2;

x1=x(1:M:N);

n1=1:1:N/M;

subplot(2,1,1);

stem(n,x);

xlabel('n');ylabel('x');title('input signal');

subplot(2,1,2);

stem(n1-1,x1);

xlabel('n');ylabel('x1');title('Down sampled sequence');

RESULT:

M

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 29

EXP.NO: 13

 IMPLEMENTATION OF INTERPOLATION PROCESS
AIM: To implement Interpolation process.

EQUIPMENT: PC with windows (95/98/XP/NT/2000). MATLAB Software

THEORY: The sampling rate of a discrete time signal can be increased by a factor L by

placing L-1 equally spaced zeros between each pair of samples. Mathematically up sampling

is represented by

 Y(n) = x(n/L) n= 0, +L, +2L,……..

PROGRAM:

%illustration of up sampling(interpolation)

clear all;

N=10;

n=0:1:N-1;

x=sin(2*pi*n/10)+sin(2*pi*n/5);

L=3;

x1=[zeros(1,L*N)]

n1=1:1:L*N;

j=1:L:L*N;

x1(j)=x;

subplot(2,1,1);

stem(n,x);

xlabel('n');ylabel('x');title('input signal');

subplot(2,1,2);

stem(n1,x1);

xlabel('n');ylabel('x1');title('up sample sequence');

RESULT:

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 30

EXP.NO: 14

Implementation of I/D Sampling Rate Converters

AIM: To Implement I/D Sampling Rate Converter

EQUIPMENT: PC with windows (95/98/XP/NT/2000). MATLAB Software

PROGRAM:

% Illustration of Sampling Rate Alteration by a Ratio of Two Integers

clf;clear all; clc;

L = input('Up-sampling factor = ');

M = input('Down-sampling factor = ');

n = 0:29;

x = sin(2*pi*0.43*n) + sin(2*pi*0.31*n);

y = resample(x,L,M);

subplot(2,1,1);

stem(n,x(1:30));axis([0 29 -2.2 2.2]);

title('Input Sequence');

xlabel('Time index n'); ylabel('Amplitude');

subplot(2,1,2);

m = 0:(30*L/M)-1;

stem(m,y(1:30*L/M));axis([0 (30*L/M)-1 -2.2 2.2]);

title('Output Sequence');

xlabel('Time index n'); ylabel('Amplitude');

OUTPUT:

Up-sampling factor = 5

Down-sampling factor = 2

RESULT:

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 31

EXP.NO: 15

 IMPULSE RESPONSE OF FIRST ORDER AND SECOND ORDER SYSTEM

AIM: To determine the response of first order and second order systems.

EQUIPMENT: PC with windows (95/98/XP/NT/2000).MATLAB Software

PROGRAM:

%This program finds the unit sample response of the first order discrete system, expressed

%by its difference equation as y(n)= x(n)+2.y(n-1)

a=input('enter the coefficient vector of input starting from the coefficient of x(n) term')

b=input('enter the coefficient vector of output starting from the coefficient of y(n) term')

n1=input('enter the lower limit of the range of impulse response')

n2=input('enter the upper limit of the range of impulse response')

n=[n1:n2];

x=zeros(1,length(n));

for i=1:length(n)

 if n(i)==0

 x(i)=1;

 end

end

h=filter(a,b,x);

stem(n,h)

title('Unit sample response of the discrete system y(n)=x(n)+2.y(n-1)');

xlabel('Time ')

ylabel('Unit Sample Response')

axis([-1 7 0 35])

OUTPUT:

enter the coefficient vector of input starting from the coefficient of x(n) term1

a =1

enter the coefficient vector of output starting from the coefficient of y(n) term[1 -2] b =1 -2

enter the lower limit of the range of impulse response0 n1 = 0

enter the upper limit of the range of impulse response5 n2 = 5

RESULT:

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 32

PROGRAM:

% This program find the Unit Sample response of the second order discrete system

represented
clc;

clear all;

close all;

num=input('enter the numerator coefficient');

den=input('enter the denominator coefficient');

N=input('enter the no of samples');

h=impz(num,den,N);

disp('impulse response is');

disp(h);

stem(h);grid;

xlabel('time');

ylabel('amplitude');

title('impulse response of first order');

OUTPUT:

enter the numerator coefficient1

enter the denominator coefficient[1 -0.6 0.08]

enter the no of samples20

RESULT:

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 33

EXP.NO: 16

FIND DCT AND IDCT OF OF GIVEN IMAGE

AIM: To find DCT and IDCT of a given image

EQUIPMENT: PC with windows (95/98/XP/NT/2000).MATLAB Software

PROGRAM:

a=imread('C:\Users\eceavniet\Desktop\leena.jpg');
x=rgb2gray(a);
[m,n]=size(x);
y=dct2(x);
x1=idct2(y);
subplot(2,3,1);
imshow(a);
title('original image');
subplot(2,3,2);
imshow(y,[0 255]);
title('DCT');
subplot(2,3,3);
imshow(x1,[0 255]);
title('IDCT');

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 34

EXP.NO: 17

VERIFY LINEAR AND CORCULAR CONVOLUTION OF SIGNAL /SEQUENCE

AIM: To verify linear and circular convolution of signals /sequence

EQUIPMENT: PC with windows (95/98/XP/NT/2000).MATLAB Software

PROGRAM:

clc;

clear all;

close all;

x=input('Enter the input sequence x[n]= ');

lx=input('Enter the starting time index of x[n] =');

h=input('Enter the impulse response h[n]= ');

lh=input('Enter the starting time index of h[n] =');

y=conv(x,h);

n=lx+lh:length(y)+lx+lh-1;

stem(n,y);

ylabel('amplitude');

xlabel('time index');

title('Linear convolution output');

SAMPLE INPUTS
 Enter the input sequencex[n]= [1 2 3 4]

Enter the starting time index of x[n] =-2

Enter the impulse response h[n]= [3 3 4]

Enter the starting time index of h[n] =-1

b)CONVOLUTION WITHOUT USING CONV
clc;

close all

clear all

x=input('Enter x: ')

h=input('Enter h: ')

m=length(x);

n=length(h);

X=[x,zeros(1,n)];

H=[h,zeros(1,m)];

for i=1:n+m-1;

Y(i)=0;

for j=1:m

if(i-j+1>0)

Y(i)=Y(i)+X(j)*H(i-j+1);

else

end

end

end

stem(Y);

ylabel('Y[n]');

xlabel('----->n');

title('Convolution of Two Signals without conv function');

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 35

SAMPLE INPUTS
 enter first sequence[1 2 3 4]

enter second sequence[3 3 4]

CIRCULAR CONVOLUTION

MATLAB CODE
 clc;

clear all;

close all;%Circular convolution

x=input('first seqn');

h=input('secondseqn');

subplot(3,1,1);

stem(x);

subplot(3,1,2);

stem(h);n1=length(x);

n2=length(h);

N=max(n1,n2);

x=[x,zeros(1,N-n1)];

h=[h,zeros(1,N-n2)];

for n=1:Ny(n)=0;

for k=1:N

y(n)=y(n)+x(k)*h(mod(n+N-k,N)+1);

end;

end;

subplot(3,1,3);

stem(y);

SAMPLE INPUTS
 first seqn[1 2 3 4]second seqn[4 3 2 1]

RESULT
 The circular convolution of two given sequences was performed using MATLABand the

resulting sequencewas plotted.y = 24 22 24 30

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 36

EXP.NO: 18

VERIFY SPATIAL DOMAIN FILTERING OF GIVEN

AIM: Read a 256x256 image. Do the following operations.

a) Filtering using simple averaging masks.

b) Median filtering

c) Gaussian filtering

d) Triangular filtering(Pyramidal filter, cone filter)

e) Compare your results

EQUIPMENT: PC with windows (95/98/XP/NT/2000).MATLAB Software

PROGRAM:

clc

clear all

close all

A=imread('boat_512.tiff');

A=imresize(A,[256 256]);

%% Creating a 5x5 averaging filter

h1=fspecial('average',5);

B1=imfilter(A,h1,'replicate');

imshow(A)

title('Original image')

figure

imshow(B1)

title('Output of averaging filter')

%% Creating a 5x5 Median filter

B2=medfilt2(A, [5 5]);

figure

imshow(B2)

title('Output of median filter')

%% Creating a 5x5 Gaussian filter

h2=fspecial('gaussian',[5 5],1);

B3=imfilter(A,h2,'replicate');

figure

imshow(B3)

title('Output of Gaussian filter')

%% Creating a 5x5 Pyramidal filter

h3=(1/81).*[1 2 3 2 1 ;2 4 6 4 2 ; 3 6 9 6 3 ; 2 4 6 4 2 ; 1 2 3 2 1];

B4=imfilter(A,h3,'replicate');

figure

imshow(B4)

title('Output of pyramidal filter')

%% Creating a 5x5 Cone filter

h4=(1/25).*[0 0 1 0 0;0 2 2 2 0;1 2 5 2 1;0 2 2 2 0;0 0 1 0 0];

B5=imfilter(A,h4,'replicate');

figure

imshow(B5)

title('Output of cone filter')

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 37

Output

Original image Output of averaging filter

Output of median filter Output of Gaussian filter

Output of pyramidal filter

Output of cone filter

Observations
All the filters used above are defined using 5x5 masks. No noise has been added to any of the

images. From the above images, we can see that the simple averaging filter produces the

largest amount of blurring (smoothening) of the image. Out of all the filters above, the

Gaussian filter produces the best results in terms of the visual perception.

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 38

EXP.NO: 18

DEVELOP AN ALGORITHM TO IMPLEMENT HISTOGRAM EQUALIZATION

AND HISTOGRAM SPECIFICATION OF OF GIVEN IMAGE

AIM: to develop an algorithm to implement Histogram equalization and Histogram

 Specification of given image

EQUIPMENT: PC with windows (95/98/XP/NT/2000).MATLAB Software

Matlab Code:

a) Histogram equalization

%% Histogram Equalization %%

% Implementation of Algorithm

clc;

clear all;

close all;

A1=imread('einstein.tif');

A=imresize(A1,[256 256]);

B=uint8(zeros(256,256));

freq=zeros(256,1);

probf=zeros(256,1);

cum_prob=zeros(256,1);

cum=zeros(256,1);

output=zeros(256,1);

for i=1:256

 for j=1:256

 value=A(i,j);

 freq(value+1)=freq(value+1)+1;

 probf(value+1)=freq(value+1)/(256*256);

 end

end

sum=0;

no_bins=255;

for i=1:size(probf)

 sum=sum+freq(i);

 cum_prob(i)=sum/(256*256);

 output(i)=round(cum_prob(i)*no_bins);

end

for i=1:256

 for j=1:256

 B(i,j)=output(A(i,j)+1);

 end

end

figure

subplot (1,2,1)

imshow(A);

title('Original Image')

subplot (1,2,2)

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 39

imhist(A)

title('Histogram of Original Image')

figure

subplot (1,2,1)

imshow(B);

title('Histogram Equalized Image');

subplot (1,2,2)

imhist(B)

title('Histogram of Equalized Image')

%% Implemenattion using built in function

Heq = histeq(A);

figure

subplot (1,2,1)

imshow(Heq);

title('Histogram Equalized Image using built-in function');

subplot (1,2,2)

imhist(Heq)

title('Histogram of Equalized Image')

Output

Original Image

0

200

400

600

800

1000

1200

1400

1600

1800

Histogram of Original Image

0 100 200

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 40

Histogram Equalized Image

0

200

400

600

800

1000

1200

1400

1600

1800

Histogram of Equalized Image

0 100 200

Histogram Equalized Image using built-in function

0

200

400

600

800

1000

1200

1400

1600

1800

Histogram of Equalized Image

0 100 200

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 41

b) Histogram Specification

%% Histogram Specification

clear all;close all;clc

A1 = imread('lena512','bmp');

A =imresize(A1,[256 256]);

%% Finding the pdf of input image

B=uint8(zeros(256,256));

freq=zeros(256,1);

probf=zeros(256,1);

cum_prob=zeros(256,1);

cum=zeros(256,1);

for i=1:256

 for j=1:256

 value=A(i,j);

 freq(value+1)=freq(value+1)+1;

 probf(value+1)=freq(value+1)/(256*256);

 end

end

sum1=0;

no_bins=255;

for i=1:size(probf)

 sum1=sum1+freq(i);

 cum(i)=sum1;

 cum_prob(i)=cum(i)/(256*256);

end

%% Histogram Matching for exponential pdf

pdfZ=1+exp((0:.1:25.5));% Specified pdf

pdfZ=pdfZ./sum(pdfZ);

zk=pdfZ*triu(ones(256));

mapping=zeros(256);

z0=zeros(256);

for q=1:256

 for p=mapping(q)+1:256

 if ((zk(p)-cum_prob(q)) >= 0)

 mapping(q) = p;

 list=find(A == q-1);

 z0(list)=p;

 break

 end

 end

end

Z1=reshape(z0,256*256,1);

Zpdf=hist(Z1,0:1:255)/100000;

figure

imshow(A);

title('Original Image')

figure

z0=uint8(z0);

imshow(z0)

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 42

title(' Histogram Matched Image - Exponential pdf')

figure

subplot(3,1,1),stem(0:255,probf);

title('pdf of Input Image')

subplot(3,1,2),stem(0:255,pdfZ);

title('Specified pdf');

subplot(3,1,3),stem(0:255,Zpdf);

title('Matched pdf');

Output

Original Image

 Histogram Matched Image - Exponential pdf

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 43

0 50 100 150 200 250 300
0

0.01

0.02
pdf of Input Image

0 50 100 150 200 250 300
0

0.05

0.1
Specified pdf

0 50 100 150 200 250 300
0

0.1

0.2
Matched pdf

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 44

ARCHITECTURE AND INSTRUCTION SET OF

DSPCHIP-TMS320C6713

AIM: To Study the architecture and Instruction set of DSP chips.

Features of Highest-Performance Floating-Point Digital Signal Processor TMS320c6713

 Enhanced Harvard Architecture

 VLIW Parallel Architecture

 Rich Addressing modes

 Two general purpose Register files (A0-A15 & B0-B15)

 32/64- Bit Data Word

 Rich Instruction set

 Eight 32-Bit Instructions/Cycle

 32/64-Bit Data Word

 4.4-, 6.7-ns Instruction Cycle Time

 1800 MIPS/1350 MFLOPS

 Rich Peripheral Set, Optimized for Audio

 Highly Optimized C/C++ Compiler

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 45

TMS320C67x Block Diagram

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 46

TMS320C6713 ARCHITECTURE

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 47

CPU (DSP Core)

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 48

CPU (DSP CORE) CONT…

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 49

TMS C6713DSK

 The 6713 DSK is a low-cost standalone development platform that enables customers

to evaluate and develop applications for the TI C67XX DSP family. The DSK also serves as

a hardware reference design for the TMS320C6713 DSP. Schematics, logic equations and

application notes are available to ease hardware development and reduce time to market.

 The DSK uses the 32-bit EMIF for the SDRAM (CE0) and daughtercard expansion

interface (CE2 and CE3). The Flash is attached to CE1 of the EMIF in 8-bit mode.

 An on-board AIC23 codec allows the DSP to transmit and receive analog signals.

McBSP0 is used for the codec control interface and McBSP1 is used for data. Analog audio

I/O is done through four 3.5mm audio jacks that correspond to microphone input, line input,

line output and headphone output. The codec can select the microphone or the line input as

the active input. The analog output is driven to both the line out (fixed gain) and headphone

(adjustable gain) connectors. McBSP1 can be re-routed to the expansion connectors in

software.

 A programmable logic device called a CPLD is used to implement glue logic that ties

the board components together. The CPLD has a register based user interface that lets the

user configure the board by reading and writing to the CPLD registers. The registers reside at

the midpoint of CE1.

 The DSK includes 4 LEDs and 4 DIPswitches as a simple way to provide the user with

interactive feedback. Both are accessed by reading and writing to the CPLD registers.

 An included 5V external power supply is used to power the board. On-board voltage

regulators provide the 1.26V DSP core voltage, 3.3V digital and 3.3V analog voltages. A

voltage supervisor monitors the internally generated voltage, and will hold the board in reset

until the supplies are within operating specifications and the reset button is released. If

desired, JP1 and JP2 can be used as power test points for the core and I/O power supplies.

 Code Composer communicates with the DSK through an embedded JTAG emulator

with a USB host interface. The DSK can also be used with an external emulator through the

external JTAG connector.

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 50

TMS320C6713 DSP FEATURES

 Highest-Performance Floating-Point Digital Signal Processor (DSP):

 Eight 32-Bit Instructions/Cycle

 32/64-Bit Data Word

 300-, 225-, 200-MHz (GDP), and 225-, 200-, 167-MHz (PYP) Clock Rates

 3.3-, 4.4-, 5-, 6-Instruction Cycle Times

 2400/1800, 1800/1350, 1600/1200, and 1336/1000 MIPS /MFLOPS

 Rich Peripheral Set, Optimized for Audio

 Highly Optimized C/C++ Compiler

 Extended Temperature Devices Available

 Advanced Very Long Instruction Word (VLIW) TMS320C67x™ DSP Core

 Eight Independent Functional Units:

 Two ALUs (Fixed-Point)

 Four ALUs (Floating- and Fixed-Point)

 Two Multipliers (Floating- and Fixed-Point)

 Load-Store Architecture With 32 32-Bit General-Purpose Registers

 Instruction Packing Reduces Code Size

 All Instructions Conditional

 Instruction Set Features

 Native Instructions for IEEE 754

 Single- and Double-Precision

 Byte-Addressable (8-, 16-, 32-Bit Data)

 8-Bit Overflow Protection

 Saturation; Bit-Field Extract, Set, Clear; Bit-Counting; Normalization

 L1/L2 Memory Architecture

 4K-Byte L1P Program Cache (Direct-Mapped)

 4K-Byte L1D Data Cache (2-Way)

 256K-Byte L2 Memory Total: 64K-Byte L2 Unified Cache/Mapped RAM, and 192K-

Byte Additional L2 Mapped RAM

 Device Configuration

 Boot Mode: HPI, 8-, 16-, 32-Bit ROM Boot

 Endianness: Little Endian, Big Endian

 32-Bit External Memory Interface (EMIF)

 Glueless Interface to SRAM, EPROM, Flash, SBSRAM, and SDRAM

 512M-Byte Total Addressable External Memory Space

 Enhanced Direct-Memory-Access (EDMA) Controller (16 Independent Channels)

 16-Bit Host-Port Interface (HPI)

 Two Multichannel Audio Serial Ports (McASPs)

 Two Independent Clock Zones Each (1 TX and 1 RX)

 Eight Serial Data Pins Per Port:

 Individually Assignable to any of the Clock Zones

 Each Clock Zone Includes:

 Programmable Clock Generator

 Programmable Frame Sync Generator

 TDM Streams From 2-32 Time Slots

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 51

 Support for Slot Size:

 8, 12, 16, 20, 24, 28, 32 Bits

 Data Formatter for Bit Manipulation

 Wide Variety of I2S and Similar Bit Stream Formats

 Integrated Digital Audio Interface Transmitter (DIT) Supports:

 S/PDIF, IEC60958-1, AES-3, CP-430 Formats

 Up to 16 transmit pins

 Enhanced Channel Status/User Data

 Extensive Error Checking and Recovery

 Two Inter-Integrated Circuit Bus (I
2
C Bus™) Multi-Master and Slave Interfaces

 Two Multichannel Buffered Serial Ports:

 Serial-Peripheral-Interface (SPI)

 High-Speed TDM Interface

 AC97 Interface

 Two 32-Bit General-Purpose Timers

 Flexible Phase-Locked-Loop (PLL) Based Clock Generator Module

 IEEE-1149.1 (JTAG) Boundary-Scan-Compatible

 Package Options:

 208-Pin PowerPAD™ Plastic (Low-Profile) Quad Flatpack (PYP)

 272-BGA Packages (GDP and ZDP)

 0.13-µm/6-Level Copper Metal Process

 CMOS Technology

 3.3-V I/Os, 1.2 -V Internal (GDP & PYP)

 3.3-V I/Os, 1.4-V Internal (GDP)(300 MHz only)

TMS320C6713 DSK Overview Block Diagram

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 52

DSK HARDWARE INSTALLATION

 Shut down and Power off the PC

 Connect the supplied USB port cable to the board

 Connect the other end of the cable to the USB port of PC

 Note: If you plan to install a Microphone, speaker, or

 Signal generator/CRO these must be plugged in properly

 Before you connect power to the DSK

 Plug the power cable into the board

 Plug the other end of the power cable into a power outlet

 The user LEDs should flash several times to indicate board is operational

 When you connect your DSK through USB for the first time on windows loaded PC

the new hardware found wizard will come up. So, Install the drivers (The CCS CD

contains the require drivers for C5416 DSK).

 Install the CCS software for C5416 DSK

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 53

 CODE COMPOSER STUDIO

INTRODUCTION TO CODE COMPOSER STUDIO

 Code Composer is the DSP industry's first fully integrated development environment

(IDE) with DSP-specific functionality. With a familiar environment liked MS-based C++TM,

Code Composer lets you edit, build, debug, profile and manage projects from a single unified

environment. Other unique features include graphical signal analysis, injection/extraction of

data signals via file I/O, multi-processor debugging, automated testing and customization via

a C-interpretive scripting language and much more.

CODE COMPOSER FEATURES INCLUDE:

 IDE

 Debug IDE

 Advanced watch windows

 Integrated editor

 File I/O, Probe Points, and graphical algorithm scope probes

 Advanced graphical signal analysis

 Interactive profiling

 Automated testing and customization via scripting

 Visual project management system

 Compile in the background while editing and debugging

 Multi-processor debugging

 Help on the target DSP

To create a system configuration using a standard configuration file:

Step 1: Start CCS Setup by double clicking on the Setup CCS desktop icon.

Step 2: select Family  c67xx

 Platform  simulator

 Endianness  little

.

Step 3: Click the Import button (File  import) to import our selection (c67xx_sim.ccs) to

the system configuration currently being created in the CCS Setup window.

Step 4: Click the Save and Quit button to save the configuration in the System Registry.

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 54

Step 5: Click the Yes button to start the CCS IDE when we exit CCS Setup. The CCS Setup

closes and the CCS IDE automatically opens using the configuration we just created.

PROCEDURE TO WORK ON CODE COMPOSER STUDIO

Step 1: Creating a New Project

 From the Project menu, choose New.

In the Project Name field, type the name we want for our project. Each project we

create must have a unique name, and Click Finish. The CCS IDE creates a project file

called projectname.pjt. This file stores our project settings and references the various

files used by our project.

The Project Creation wizard window displays.

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 55

Step 2: Creating a source file

Create a new source file using ‗File new source file ‗ pull down menu and save

the source file with .c extension in the current project name directory.

Save as type: c/c++ source file (*.c*)

Path: C:\CCStudio_v3.1\ MyProjects\Project Name\

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 56

Step 3: Add files to our project (source file\ library file\ linker file)

Source file: Add the source file in the project using ‗Projectadd files to project‘

pull down menu.

Files of type: c/c++ source file (*.c*)

Path: C:\CCStudio_v3.1\ MyProjects\Project Name\file_name.c

Library file: Add the library file in the project using ‗Projectadd files to

project‘ pull down menu.

Files of type: Object and Library Files (*.o*,*.l*)

Path: C:\CCStudio_v3.1\ C6000\ cgtools\ lib \ rts6700.lib

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 57

Linker file: Add the linker file in the project using ‗Projectadd files to project‘

pull down menu.

Files of type: Linker command Files (*.cmd*,*.lcf*)

Path: C:\CCStudio_v3.1\ tutorial\ dsk6711\ hello1 \ hello.cmd

Step 4: Building and Running the Program (compile\ Build\ Load Program\ Run)

Compile: Compile the program using the ‗Project-compile‘ pull down menu or by

clicking the shortcut icon on the left side of program window.

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 58

Build: Build the program using the ‗Project-Build‘ pull down menu or by clicking

the shortcut icon on the left side of program window.

Load Program: Load the program in program memory of DSP chip using the ‗File-

load program‘ pull down menu.

Files of type:(*.out*)

Path: C:\CCStudio_v3.1\ MyProjects\Project Name\ Debug\ Project Name.out

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 59

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 60

Run: Run the program using the ‗Debug-Run‘ pull down menu or by clicking the

shortcut icon on the left side of program window.

Step 5: observe output using graph
 Choose View Graph Time/Frequency.

 In the Graph Property Dialog, change the Graph Title, Start Address, Acquisition

Buffer Size, Display Data Size, DSP Data Type, Auto scale, and Maximum Y-

Value properties to the values.

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 61

EXP.No:

 LINEAR CONVOLUTION

AIM: Verify the linear convolution operation Using DSK Code composer studio

EQUIPMENT:TMS 320C6713 Kit.

 RS232 Serial Cable

 Power Cord

 Operating System – Windows XP

 Software – CCStudio_v3.1

THEORY: Convolution is a formal mathematical operation, just as multiplication, addition,

and integration. Addition takes two numbers and produces a third number, while convolution

takes two signals and produces a third signal. Convolution is used in the mathematics of

many fields, such as probability and statistics. In linear systems, convolution is used to

describe the relationship between three signals of interest: the input signal, the impulse

response, and the output signal.

In this equation, x(k), h(n-k) and y(n) represent the input to and output from the system at

time n. Here we could see that one of the inputs is shifted in time by a value every time it is

multiplied with the other input signal. Linear Convolution is quite often used as a method of

implementing filters of various types.

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 62

„C‟ PROGRAM TO IMPLEMENT LINEAR CONVOLUTION :

//Linear convolution program in c language using CCStudio

#include<stdio.h>

int x[15],h[15],y[15];

main()

{

int i,j,m,n;

printf("\n enter first sequence length m:");

scanf("%d",&m);

printf("\n enter second sequence length n:");

scanf("%d",&n);

printf("Enter i/p sequence for x(n):\n");

for(i=0;i<m;i++)

scanf("%d",&x[i]);

printf("Enter i/p sequence for h(n): \n");

for(i=0;i<n; i++)

scanf("%d",&h[i]);

// padding of zeors

for(i=m;i<=m+n-1;i++)

x[i]=0;

for(i=n;i<=m+n-1;i++)

h[i]=0;

/* convolution operation */

for(i=0;i<m+n-1;i++)

{

y[i]=0;

for(j=0;j<=i;j++)

{

y[i]=y[i]+(x[j]*h[i-j]);

}

}

//displaying the o/p

printf("Output (Linear Convolution) sequence is:\n ");

for(i=0;i<m+n-1;i++)

printf("y[%d]=%d\t",i,y[i]);

}

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 63

PROCEDURE:

 Open Code Composer Studio, make sure the DSP kit is turned on.

 Start a new project using ‗Project-new ‗ pull down menu, save it in a

separate directory(c:\ti\myprojects) with name lconv.pjt.

 Add the source files conv.asm.

 to the project using ‗Projectadd files to project‘ pull down menu.

 Add the linker command file hello.cmd.

(Path: c:\ti\tutorial\dsk6713\hello1\hello.cmd)

 Add the run time support library file rts6700.lib.

(Path: c:\ti\c6000\cgtools\lib\rts6700.lib)

 Compile the program using the ‗Project-compile‘ pull down menu or by

clicking the shortcut icon on the left side of program window.

 Build the program using the ‗Project-Build‘ pull down menu or by

clicking the shortcut icon on the left side of program window.

 Load the program (lconv.out) in program memory of DSP chip using the

‗File-load program‘ pull down menu.

 To View output graphically

 Select view  graph  time and frequency.

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 64

OUTPUT FOR LINEAR CONVOLUTION:

enter first sequence length m:4

enter second sequence length n:3

Enter i/p sequence for x(n):

1 2 3 4

Enter i/p sequence for h(n):

2 3 1

Output (Linear Convolution) sequence is:

 y[0]=2 y[1]=7 y[2]=13 y[3]=19 y[4]=15 y[5]=4

Graph Property Graph

LINEAR CONVOLUTION

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 65

EXP.No:

 CIRCULAR CONVOLUTION

AIM: To verify the circular convolution operation Using DSK Code composer studio

EQUIPMENT:TMS 320C6713 Kit.

 RS232 Serial Cable

 Power Cord

 Operating System – Windows XP

 Software – CCStudio_v3.1

THEORY:

Circular convolution is another way of finding the convolution sum of two input

signals. It resembles the linear convolution, except that the sample values of one of the input

signals is folded and right shifted before the convolution sum is found. Also note that circular

convolution could also be found by taking the DFT of the two input signals and finding the

product of the two frequency domain signals. The Inverse DFT of the product would give the

output of the signal in the time domain which is the circular convolution output. The two

input signals could have been of varying sample lengths. But we take the DFT of higher

point, which ever signals levels to.. This process is called circular convolution.

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 66

/*program to implement circular convolution */

#include<stdio.h>

 int m,n,x[30],h[30],y[30],i,j, k,x2[30],a[30];

void main()

{

 printf(" enter the length of the first sequence\n");

 scanf("%d",&m);

 printf(" enter the length of the second sequence\n");

 scanf("%d",&n);

 printf(" enter the first sequence\n");

 for(i=0;i<m;i++)

 scanf("%d",&x[i]);

 printf(" enter the second sequence\n");

 for(j=0;j<n;j++)

 scanf("%d",&h[j]);

 if(m-n!=0) /*If length of both sequences are not equal*/

 {

 if(m>n) /* Pad the smaller sequence with zero*/

 {

 for(i=n;i<m;i++)

 h[i]=0;

 n=m;

 }

 for(i=m;i<n;i++)

 x[i]=0;

 m=n;

 }

 y[0]=0;

 a[0]=h[0];

 for(j=1;j<n;j++) /*folding h(n) to h(-n)*/

 a[j]=h[n-j];

 /*Circular convolution*/

 for(i=0;i<n;i++)

 y[0]+=x[i]*a[i];

 for(k=1;k<n;k++)

 {

 y[k]=0;

 /*circular shift*/

 for(j=1;j<n;j++)

 x2[j]=a[j-1];

 x2[0]=a[n-1];

 for(i=0;i<n;i++)

 {

 a[i]=x2[i];

 y[k]+=x[i]*x2[i];

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 67

 }

 }

 /*displaying the result*/

 printf(" the circular convolution is\n");

 for(i=0;i<n;i++)

 printf("%d \t",y[i]);

 }

PROCEDURE:

 Open Code Composer Studio; make sure the DSP kit is turned on.

 Start a new project using ‗Project-new ‗ pull down menu, save it in a

separate directory(c:\ti\myprojects) with name cir conv.pjt.

 Add the source files Circular Convolution.C.

 to the project using ‗Projectadd files to project‘ pull down menu.

 Add the linker command file hello.cmd .

(Path: c:\ti\tutorial\dsk6713\hello1\hello.cmd)

 Add the run time support library file rts6700.lib

(Path: c:\ti\c6000\cgtools\lib\rts6700.lib)

 Compile the program using the ‗Project-compile‘ pull down menu or by

clicking the shortcut icon on the left side of program window.

 Build the program using the ‗Project-Build‘ pull down menu or by

clicking the shortcut icon on the left side of program window.

 Load the program(lconv.out) in program memory of DSP chip using the

‗File-load program‘ pull down menu.

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 68

OUTPUT FOR CIRCULAR CONVOLUTION:

enter the length of the first sequence

4

enter the length of the second sequence

3

enter the first sequence

1 2 3 4

enter the second sequence

1 2 3

the circular convolution is

18 16 10 16

Graph Property Graph

CIRCULAR CONVOLUTION

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 69

EXP.No:

N-POINT FAST FOURIER TRANSFORM (FFT)

AIM: To find the DFT of a sequence using FFT algorithm.

EQUIPMENT: TMS 320C6713 Kit.

 Oscilloscope & Function Generator

 RS232 Serial Cable

 Power Cord

 Operating System – Windows XP

 Software – CCStudio_v3.1

THEORY:
 The Fast Fourier Transform is useful to map the time-domain sequence into a

continuous function of a frequency variable. The FFT of a sequence {x(n)} of length N is

given by a

Complex-valued sequence X (k).

10;)()(

0

2






NkenxkX
M

k

n

nk
j 

 The above equation is the mathematical representation of the DFT. As the number of

computations involved in transforming a N point time domain signal into its corresponding

frequency domain signal was found to be N
2
 complex multiplications, an alternative

algorithm involving lesser number of computations is opted. When the sequence x(n) is

divided into 2 sequences and the DFT performed separately, the resulting number of

computations would be N
2
/2. (i.e.)

kn

N

N

n

N

n

nk

N WnxWnxkx)12(
12

0

12

0

2)12()2()(

2 2










 

Consider x(2n) be the even sample sequences and x(2n+1) be the odd sample sequence

derived form x(n).

 




12

0

2

2

)2(

N

n

nk

NWnx

 (N/2)
2
multiplication‘s






12

0

)12(

2

)12(

N

n

kn

NWnx

 an other (N/2)
2

multiplication's finally resulting in (N/2)
2

+ (N/2)
2

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 70

= nsComputatio

NNN

244

222



 Further solving Eg. (2)

k

N

nk

N

N

n

N

n

nk

N WWnxWnxkx)2(
12

0

12

0

2)12()2()(

2

 








)2(

12

0

12

0

2)12()2(nk

N

N

n

N

n

k

N

nk

N WnxWWnx  








 Dividing the sequence x(2n) into further 2 odd and even sequences would reduce the

computations.

 WN  is the twiddle factor

n

j

e

2



nk
n

j

nk

N eW







 



2




















 22

N
K

NN

N
K

N WWW

2

22 n

n

j
k

n

j

ee

 



k
n

j

k

N eW

2



)sin(cos  jW k

N 

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 71

)1(2 










k

N

N
K

N WW

k

N

N
K

N WW 










2

 Employing this equation, we deduce

)2(

12

0

12

0

2)12()2()(

2

nk

N

N

n

N

n

nk

N WnxWnxkx  







(13)

)2(12

12

0

2)12()2()
2

(nk

N

N
N

n

K

N

nk

N WnxWWnx
N

kx 




   (14)

 The time burden created by this large number of computations limits the usefulness of

DFT in many applications. Tremendous efforts devoted to develop more efficient ways of

computing DFT resulted in the above explained Fast Fourier Transform algorithm. This

mathematical shortcut reduces the number of calculations the DFT requires drastically.

The above mentioned radix-2 decimation in time FFT is employed for domain

transformation.

 Dividing the DFT into smaller DFTs is the basis of the FFT. A radix-2 FFT divides the

DFT into two smaller DFTs, each of which is divided into smaller DFTs and so on,

resulting in a combination of two-point DFTs. The Decimation -In-Time (DIT) FFT

divides the input (time) sequence into two groups, one of even samples and the other of

odd samples. N/2 point DFT are performed on the these sub-sequences and their outputs

are combined to form the N point DFT.

The above shown mathematical representation forms the basis of N point FFT and is called

the Butterfly Structure.

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 72

PROGRAM

fft256.c

#include <math.h>

#define PTS 64 //# of points for FFT

#define PI 3.14159265358979

typedef struct {float real,imag;} COMPLEX;

void FFT(COMPLEX *Y, int n); //FFT prototype

float iobuffer[PTS]; //as input and output buffer

float x1[PTS]; //intermediate buffer

short i; //general purpose index variable

short buffercount = 0; //number of new samples in iobuffer

short flag = 0; //set to 1 by ISR when iobuffer full

COMPLEX w[PTS]; //twiddle constants stored in w

COMPLEX samples[PTS]; //primary working buffer

main()

{

 for (i = 0 ; i<PTS ; i++) // set up twiddle constants in w

 {

 w[i].real = cos(2*PI*i/(PTS*2.0)); //Re component of twiddle constants

 w[i].imag =-sin(2*PI*i/(PTS*2.0)); //Im component of twiddle constants

 }

 for (i = 0 ; i < PTS ; i++) //swap buffers

 {

 iobuffer[i] = sin(2*PI*10*i/64.0);/*10- > freq,

 64 -> sampling freq*/

 samples[i].real=0.0;

 samples[i].imag=0.0;

 }

 for (i = 0 ; i < PTS ; i++) //swap buffers

 {

 samples[i].real=iobuffer[i]; //buffer with new data

 }

 for (i = 0 ; i < PTS ; i++)

 samples[i].imag = 0.0; //imag components = 0

FFT(samples,PTS); //call function FFT.c

 for (i = 0 ; i < PTS ; i++) //compute magnitude

 {

 x1[i] = sqrt(samples[i].real*samples[i].real

 + samples[i].imag*samples[i].imag);

 }

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 73

} //end of main

fft.c:

#define PTS 64 //# of points for FFT

typedef struct {float real,imag;} COMPLEX;

extern COMPLEX w[PTS]; //twiddle constants stored in w

void FFT(COMPLEX *Y, int N) //input sample array, # of points

{

 COMPLEX temp1,temp2; //temporary storage variables

 int i,j,k; //loop counter variables

 int upper_leg, lower_leg; //index of upper/lower butterfly leg

 int leg_diff; //difference between upper/lower leg

 int num_stages = 0; //number of FFT stages (iterations)

 int index, step; //index/step through twiddle constant

 i = 1; //log(base2) of N points= # of stages

 do

 {

 num_stages +=1;

 i = i*2;

 }while (i!=N);

 leg_diff = N/2; //difference between upper&lower legs

 step = (PTS*2)/N; //step between values in twiddle.h

 for (i = 0;i < num_stages; i++) //for N-point FFT

 {

 index = 0;

 for (j = 0; j < leg_diff; j++)

 {

 for (upper_leg = j; upper_leg < N; upper_leg += (2*leg_diff))

 {

 lower_leg = upper_leg+leg_diff;

 temp1.real = (Y[upper_leg]).real + (Y[lower_leg]).real;

 temp1.imag = (Y[upper_leg]).imag + (Y[lower_leg]).imag;

 temp2.real = (Y[upper_leg]).real - (Y[lower_leg]).real;

 temp2.imag = (Y[upper_leg]).imag - (Y[lower_leg]).imag;

 (Y[lower_leg]).real = temp2.real*(w[index]).real

 -temp2.imag*(w[index]).imag;

 (Y[lower_leg]).imag = temp2.real*(w[index]).imag

 +temp2.imag*(w[index]).real;

 (Y[upper_leg]).real = temp1.real;

 (Y[upper_leg]).imag = temp1.imag;

 }

 index += step;

 }

 leg_diff = leg_diff/2;

 step *= 2;

 }

 j = 0;

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 74

 for (i = 1; i < (N-1); i++) //bit reversal for resequencing data

 {

 k = N/2;

 while (k <= j)

 {

 j = j - k;

 k = k/2;

 }

 j = j + k;

 if (i<j)

 {

 temp1.real = (Y[j]).real;

 temp1.imag = (Y[j]).imag;

 (Y[j]).real = (Y[i]).real;

 (Y[j]).imag = (Y[i]).imag;

 (Y[i]).real = temp1.real;

 (Y[i]).imag = temp1.imag;

 }

 }

 return;

}

PROCEDURE:

 Open Code Composer Studio, make sure the DSP kit is turned on.

 Start a new project using ‗Project-new ‗ pull down menu, save it in a

separate directory(c:\ti\myprojects) with name ―FFT.pjt”.

 Add the source files ―fft256.c― and “fft.C” in the project using

 ‗Projectadd files to project‘ pull down menu.

 Add the linker command file ―hello.cmd”.

 Add the rts file “rts6700.lib” .

 Compile the program using the ‗Project-compile‘ pull down menu or by

clicking the shortcut icon on the left side of program window.

 Load the program in program memory of DSP chip using the ‗File-load program‘ pull

down menu.

 Run the program and observe output using graph utility.

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 75

GRAPHS

Graph Property Graph

FFT INPUT

Graph Property Graph

FFT OUTPUT

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 76

EXP.No:

TO COMPUTE POWER DENSITY SPECTRUM OF

A SEQUENCE [USING TMS320C6713 DSP PROCESSOR]

AIM: To find the PSD of a sequence.

EQUIPMENT:

TMS 320C6713 Kit.

Oscilloscope & Function Generator

RS232 Serial Cable

Power Cord

Operating System: Windows XP

Software: CCStudio_v3.1

INTRODUCTION:The total or the average power in a signal is often not of as great an

interest. We are most often interested in the PSD or the Power Spectrum. We often want to

see is how the input power has been redistributed by the channel and in this frequency-based

redistribution of power is where most of the interesting information lies. The total area under

the Power Spectrum or PSD is equal to the total avg. power of the signal. The PSD is an even

function of frequency or in other words.

To compute PSD:

The value of the auto-correlation function at zero-time equals the total power in the signal. To

compute PSD we compute the auto-correlation of the signal and then take its FFT. The auto-

correlation function and PSD are a Fourier transform pair. (Another estimation method called

―period gram‖ uses sampled FFT to compute the PSD.).

E.g.: For a process x(n) correlation is defined as:

Power Spectral Density is a Fourier transform of the auto correlation.

ALGORITHM TO IMPLEMENT PSD:

 Step 1 - Select no. of points for FFT(Eg: 64).

 Step 2 – Generate a sine wave of frequency ‗f ‗ (eg: 10 Hz with a sampling rate = No.

of Points of FFT(eg. 64)) using math library function.

() { () ()}R E x n x n  

1

1
lim () ()

N

N
n

x n x n
N






 

1

1

1

ˆ() (()) lim ()

1
() (()) ()

2

N
j

N
N

j

S FT R R e

R FT S S e d







  

   






 



 

 





AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 77

 Step 3 - Compute the Auto Correlation of Sine wave .

 Step4 - Take output of auto correlation, apply FFT algorithm .

 Step 4 - Use Graph option to view the PSD.

 Step 5 - Repeat Step-1 to 4 for different no. of points & frequencies.

 „C‟ PROGRAM TO IMPLEMENT PSD:

 PSD.c:

/***

 * FILENAME

 * Non_real_time_PSD.c

 * DESCRIPTION

 * Program to Compute Non real time PSD

 * using the TMS320C6711 DSK.

 * DESCRIPTION

 * Number of points for FFT (PTS)

 * x --> Sine Wave Co-Efficients

 * iobuffer --> Out put of Auto Correlation.

 * x1 --> use in graph window to view PSD

/*===*/

#include <math.h>

#define PTS 128 //# of points for FFT

#define PI 3.14159265358979

typedef struct {float real,imag;} COMPLEX;

void FFT(COMPLEX *Y, int n); //FFT prototype

float iobuffer[PTS]; //as input and output buffer

float x1[PTS],x[PTS]; //intermediate buffer

short i; //general purpose index variable

short buffercount = 0; //number of new samples in iobuffer

short flag = 0; //set to 1 by ISR when iobuffer full

float y[128];

COMPLEX w[PTS]; //twiddle constants stored in w

COMPLEX samples[PTS]; //primary working buffer

main()

{

 float j,sum=0.0 ;

 int n,k,i,a;

 for (i = 0 ; i<PTS ; i++) // set up twiddle constants in w

 {

 w[i].real = cos(2*PI*i/(PTS*2.0));

/*Re component of twiddle constants*/

 w[i].imag =-sin(2*PI*i/(PTS*2.0));

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 78

 /*Im component of twiddle constants*/

 }

/****************Input Signal X(n) *************************/

 for(i=0,j=0;i<PTS;i++)

 { x[i] = sin(2*PI*5*i/PTS);

 // Signal x(Fs)=sin(2*pi*f*i/Fs);

 samples[i].real=0.0;

 samples[i].imag=0.0;

 }

/********************Auto Correlation of X(n)=R(t) ***********/

 for(n=0;n<PTS;n++)

 {

 sum=0;

 for(k=0;k<PTS-n;k++)

 {

 sum=sum+(x[k]*x[n+k]); // Auto Correlation R(t)

 }

 iobuffer[n] = sum;

 }

/********************** FFT of R(t) ***********************/

 for (i = 0 ; i < PTS ; i++) //swap buffers

 {

 samples[i].real=iobuffer[i]; //buffer with new data

 }

 for (i = 0 ; i < PTS ; i++)

 samples[i].imag = 0.0; //imag components = 0

 FFT(samples,PTS); //call function FFT.c

/******************** PSD ********************/

 for (i = 0 ; i < PTS ; i++) //compute magnitude

 {

 x1[i] = sqrt(samples[i].real*samples[i].real

 + samples[i].imag*samples[i].imag);

 }

} //end of main

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 79

FFT.c:

#define PTS 128 //# of points for FFT

typedef struct {float real,imag;} COMPLEX;

extern COMPLEX w[PTS]; //twiddle constants stored in w

void FFT(COMPLEX *Y, int N) //input sample array, # of points

{

 COMPLEX temp1,temp2; //temporary storage variables

 int i,j,k; //loop counter variables

 int upper_leg, lower_leg; //indexof upper/lower butterfly leg

 int leg_diff; //difference between upper/lower leg

 int num_stages = 0; //number of FFT stages (iterations)

 int index, step; //index/step through twiddle constant

 i = 1; //log(base2) of N points= # of stages

 do

 {

 num_stages +=1;

 i = i*2;

 }while (i!=N);

 leg_diff = N/2; //difference between upper&lower legs

 step = (PTS*2)/N; //step between values in twiddle.h// 512

 for (i = 0;i < num_stages; i++) //for N-point FFT

 {

 index = 0;

 for (j = 0; j < leg_diff; j++)

 {

 for (upper_leg = j; upper_leg < N; upper_leg += (2*leg_diff))

 {

 lower_leg = upper_leg+leg_diff;

 temp1.real = (Y[upper_leg]).real + (Y[lower_leg]).real;

 temp1.imag = (Y[upper_leg]).imag + (Y[lower_leg]).imag;

 temp2.real = (Y[upper_leg]).real - (Y[lower_leg]).real;

 temp2.imag = (Y[upper_leg]).imag - (Y[lower_leg]).imag;

 (Y[lower_leg]).real = temp2.real*(w[index]).real

 -temp2.imag*(w[index]).imag;

 (Y[lower_leg]).imag = temp2.real*(w[index]).imag

 +temp2.imag*(w[index]).real;

 (Y[upper_leg]).real = temp1.real;

 (Y[upper_leg]).imag = temp1.imag;

}

 index += step;

 }

 leg_diff = leg_diff/2;

 step *= 2;

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 80

 }

 j = 0;

 for (i = 1; i < (N-1); i++)

//bit reversal for resequencing data

 {

 k = N/2;

 while (k <= j)

 {

 j = j - k;

 k = k/2;

 }

 j = j + k;

 if (i<j)

 {

 temp1.real = (Y[j]).real;

 temp1.imag = (Y[j]).imag;

 (Y[j]).real = (Y[i]).real;

 (Y[j]).imag = (Y[i]).imag;

 (Y[i]).real = temp1.real;

 (Y[i]).imag = temp1.imag;

 }

 }

 return;

}

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 81

PROCEDURE:

 Open Code Composer Studio, make sure the DSP kit is turned on.

 Start a new project using ‗Project-new ‗ pull down menu, save it in a

separate directory(c:\ti\myprojects) with name ―PSD.pjt”.

 Add the source files ―PSD.c― and “FFT.c” in the project using

 ‗Projectadd files to project‘ pull down menu.

 Add the linker command file “hello.cmd” .

 Add the rts file ―rts6700.lib‖ .

 Compile the program using the ‗Project-compile‘ pull down menu or by

clicking the shortcut icon on the left side of program window.

 Load the program in program memory of DSP chip using the ‗File-load program‘ pull

down menu.

 Run the program and observe output using graph utility.

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 82

RESULTS

Graph Property Graph

PSD INPUT

Graph Property Graph

PSD OUTPUT

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 83

EXP.No:

FIR LP/HP FILTER DESIGN

USING TMS320C6713 DSP PROCESSOR

AIM: The aim of this laboratory exercise is to design and implement a Digital FIR Filter &

observe its frequency response. In this experiment we design a simple FIR filter so as to stop

or attenuate required band of frequencies components and pass the frequency components,

which are outside the required band.

EQUIPMENT:

TMS 320C6713 Kit.

Oscilloscope & Function Generator

RS232 Serial Cable

Power Cord

Operating System – Windows XP

Software – CCStudio_v3.1

THEORY: A Finite Impulse Response (FIR) filter is a discrete linear time-invariant system

whose output is based on the weighted summation of a finite number of past inputs. An FIR

transversal filter structure can be obtained directly from the equation for discrete-time

convolution.

10)()()(
1

0






Nnknhkxny
N

k
 (1)

 In this equation, x(k) and y(n) represent the input to and output from the filter at time n.

h(n-k) is the transversal filter coefficients at time n. These coefficients are generated by using

FDS (Filter Design Software or Digital filter design package).

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 84

FLOW CHART TO IMPLEMENT FIR FILTER:

 No

 Yes

 Initialize Counter = 0

Initialize Output = 0 , i = 0

Output += coeff[N-i]*val[i]

Shift the input value by one

 Initialize the DSP Board.

Take a new input in
‘data’ from the analog in
of codec in ‘data’

 Is the loop

Cnt = order

 Output += coeff[0]*data

Put the ‗data‘ in ‗val‘ array.

Write the value ‗Output‘ to

Analog output of the codec

Poll the ready bit,

when asserted

proceed.

Start

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 85

C PROGRAM TO IMPLEMENT FIR FILTER:

fir.c

#include "filtercfg.h"

#include "dsk6713.h"

#include "dsk6713_aic23.h"

float filter_Coeff[] ={0.000000,-0.001591,-0.002423,0.000000,0.005728,

0.011139,0.010502,-0.000000,-0.018003,-0.033416,-0.031505,0.000000,

0.063010,0.144802,0.220534,0.262448,0.220534,0.144802,0.063010,0.000000,

-0.031505,-0.033416,-0.018003,-0.000000,0.010502,0.011139,0.005728,

0.000000,-0.002423,-0.001591,0.000000 };

static short in_buffer[100];

DSK6713_AIC23_Config config = {\

 0x0017, /* 0 DSK6713_AIC23_LEFTINVOL Leftline input channel volume */\

 0x0017, /* 1 DSK6713_AIC23_RIGHTINVOL Right line input channel volume*/\

 0x00d8, /* 2 DSK6713_AIC23_LEFTHPVOL Left channel headphone volume */\

 0x00d8, /* 3 DSK6713_AIC23_RIGHTHPVOL Right channel headphone volume */\

 0x0011, /* 4 DSK6713_AIC23_ANAPATH Analog audio path control */\

 0x0000, /* 5 DSK6713_AIC23_DIGPATH Digital audio path control */\

 0x0000, /* 6 DSK6713_AIC23_POWERDOWN Power down control */\

 0x0043, /* 7 DSK6713_AIC23_DIGIF Digital audio interface format */\

 0x0081, /* 8 DSK6713_AIC23_SAMPLERATE Sample rate control */\

 0x0001 /* 9 DSK6713_AIC23_DIGACT Digital interface activation */ \

};

/*

 * main() - Main code routine, initializes BSL and generates tone

 */

void main()

{

 DSK6713_AIC23_CodecHandle hCodec;

 Uint32 l_input, r_input,l_output, r_output;

 /* Initialize the board support library, must be called first */

 DSK6713_init();

 /* Start the codec */

 hCodec = DSK6713_AIC23_openCodec(0, &config);

 DSK6713_AIC23_setFreq(hCodec, 1);

 while(1)

 { /* Read a sample to the left channel */

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 86

 while (!DSK6713_AIC23_read(hCodec, &l_input));

 /* Read a sample to the right channel */

 while (!DSK6713_AIC23_read(hCodec, &r_input));

 l_output=(Int16)FIR_FILTER(&filter_Coeff ,l_input);

 r_output=l_output;

 /* Send a sample to the left channel */

 while (!DSK6713_AIC23_write(hCodec, l_output));

 /* Send a sample to the right channel */

 while (!DSK6713_AIC23_write(hCodec, r_output));

 }

 /* Close the codec */

 DSK6713_AIC23_closeCodec(hCodec);

}

signed int FIR_FILTER(float * h, signed int x)

{

int i=0;

signed long output=0;

in_buffer[0] = x; /* new input at buffer[0] */

for(i=30;i>0;i--)

in_buffer[i] = in_buffer[i-1]; /* shuffle the buffer */

for(i=0;i<32;i++)

output = output + h[i] * in_buffer[i];

return(output);

}

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 87

PROCEDURE:

STEPS TO IMPLEMENT FILTERS

 Do diagnostic test

 Open DSKC6713 studio

 Open new project and give it a name. see whether the project is in C drive or D drive

 Go to file. Say new and select DSPBIOS configuration

 Select DSK6713 or DSK6711 whatever is available (double click)

 Click on configuration window and save

Path: C:/ CCStudio_v3.1/myprojects/ project name

ProjectAdd files to project

Filter type as: configuration file(*.cdb)

Configl—open

 Observe under your project .cdb file under DSP and two configure files under

generated files

 Close configl window

 Go to file say new/source file/copy paste the filter program onto untitled window

The filter program is on desktop in programs for 6713

 File/save/your project/file type is c source file and give a name to the file and say save

 After saving the file add to the project/the file name i.e the saved file and say save.

 Add library file to the project

Project Add files to project

Path: CCStudio_v3.1\C6000\dsk6713\lib\dsk6713bsl.lib

Files of type: Object and Library Files (*.o*,*.l*)

 Add header file to the project

Open configlcfg-c.c(under generated files)/

Copy #include configlcfg.h (close) and paste it to our program

Remove filter.h file

 Go to project/ add files to project

Path: CCStudio_v3.1\C6000\dsk6713

Files of type: All files

Select include/copy the first two header files(dsk 6713,dsk6713_aic23) and paste in

our project i.e

Path: CCStudio_v3.1/myprojects/ our project name

Save

 Building and Running the Program (compile\ Build\ Load Program\ Run)
Compile: Compile the program using the ‗Project-compile‘ pull down menu or by

clicking the shortcut icon on the left side of program window.

Build: Build the program using the ‗Project-Build‘ pull down menu or by clicking

the shortcut icon on the left side of program window.

 Load Program: Load the program in program memory of DSP chip using the ‗File-

load program‘ pull down menu.

Files of type:(*.out*)

Path: C:\CCStudio_v3.1\ MyProjects\Project Name\ Debug\ Project Name.out

 Run: Run the program using the ‗Debug-Run‘ pull down menu or by clicking the

shortcut icon on the left side of program window.

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 88

EXP. No:

IIR LP/HP FILTER DESIGN USING TMS320C6713 DSP PROCESSOR

AIM: The aim of this laboratory exercise is to design and implement a Digital IIR Filter &

observe its frequency response. In this experiment we design a simple IIR filter so as to stop

or attenuate required band of frequencies components and pass the frequency components

which are outside the required band

EQUIPMENT:
TMS 320C6713 Kit.

Oscilloscope & Function Generator

RS232 Serial Cable

Power Cord

Operating System – Windows XP

Software – CCStudio_v3.1

INTRODUCTION

GENERAL CONSIDERATIONS:

 In the design of frequency – selective filters, the desired filter characteristics are

specified in the frequency domain in terms of the desired magnitude and phase response of

the filter. In the filter design process, we determine the coefficients of a causal IIR filter that

closely approximates the desired frequency response specifications.

IMPLEMENTATION OF DISCRETE-TIME SYSTEMS:

 Discrete time Linear Time-Invariant (LTI) systems can be described completely by

constant coefficient linear difference equations. Representing a system in terms of constant

coefficient linear difference equation is it‘s time domain characterization. In the design of a

simple frequency–selective filter, we would take help of some basic implementation methods

for realizations of LTI systems described by linear constant coefficient difference equation.

BACKGROUND CONCEPTS:

 An Infinite impulse response (IIR) filter possesses an output response to an impulse

which is of an infinite duration. The impulse response is "infinite" since there is feedback in

the filter, that is if you put in an impulse ,then its output must produced for infinite duration

of time. The IIR filter can realize both the poles and zeroes of a system because it has a

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 89

rational transfer function, described by polynomials in z in both the numerator and the

denominator:













N

k

k

k

M

k

k

k

Za

zb

zH

1

0)(
 (1)

The difference equation for such a system is described by the following:





N

k

k

M

k

k knyaknxbny
10

)()()((2)

M and N are order of the two polynomials bk and ak are the filter coefficients. These filter

coefficients are generated using FDS (Filter Design software or Digital Filter design

package).

ALGORITHM TO IMPLEMENT:

We need to realize the Butter worth band pass IIR filter by implementing the difference

equation y[n] = b0x[n] + b1x[n-1]+b2x[n-2]-a1y[n-1]-a2y[n-2] where b0 – b2, a0-a2 are feed

forward and feedback word coefficients respectively [Assume 2
nd

order of filter].These

coefficients are calculated using MATLAB.A direct form I implementation approach is

taken.

 Step 1 - Initialize the McBSP, the DSP board and the on board codec.

―Kindly refer the Topic Configuration of 6713Codec using BSL‖

 Step 2 - Initialize the discrete time system , that is , specify the initial conditions.

Generally zero initial conditions are assumed.

 Step 3 - Take sampled data from codec while input is fed to DSP kit from the signal

generator. Since Codec is stereo , take average of input data read from left and right

channel . Store sampled data at a memory location.

 Step 4 - Perform filter operation using above said difference equation and store filter

Output at a memory location .

 Step 5 - Output the value to codec (left channel and right channel) and view the output at

Oscilloscope.

 Step 6 - Go to step 3.



AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 90

FLOWCHART FOR IIR IMPLEMENTATION:

F.1 : Flowchart for implementing IIR filter.

 Stop

output = x[0]b0+x[-1]b1+

x[-2]b2 - y[-1]a1 - y[-2]a2

 Write ‗output‘ to analog i/o.

Initialize the DSP Board.

Set initial conditions of discrete time

system by making x[0]-x[2] and y[0]-

y[2] equal to zeros and a0-a2,b0-b2

with MATLAB filter coefficients

 Take a new input and store it in x[0].

 Start

Do y[-3] = y[-2],y[-2]=y[-1]

and Y[-1] = output .

x[-3] = x[-2], x[-2]=x[-1]

x[-1]=x[0]

Poll for ready bit

Poll the ready bit, when

asserted proceed.

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 91

„C‟ PROGRAM TO IMPLEMENT IIR FILTER

#include "filtercfg.h"

#include "dsk6713.h"

#include "dsk6713_aic23.h"

const signed int filter_Coeff[] =

{

 //12730,-12730,12730,2767,-18324,21137 /*HP 2500 */

 //312,312,312,32767,-27943,24367 /*LP 800 */

 //1455,1455,1455,32767,-23140,21735 /*LP 2500 */

 //9268,-9268,9268,32767,-7395,18367 /*HP 4000*/

 7215,-7215,7215,32767,5039,6171, /*HP 7000*/

} ;

/* Codec configuration settings */

DSK6713_AIC23_Config config = { \
 0x0017, /* 0 DSK6713_AIC23_LEFTINVOL Left line input channel volume */ \

 0x0017, /* 1 DSK6713_AIC23_RIGHTINVOL Right line input channel volume */\

 0x00d8, /* 2 DSK6713_AIC23_LEFTHPVOL Left channel headphone volume */ \

 0x00d8, /* 3 DSK6713_AIC23_RIGHTHPVOL Right channel headphone volume */\

 0x0011, /* 4 DSK6713_AIC23_ANAPATH Analog audio path control */ \

 0x0000, /* 5 DSK6713_AIC23_DIGPATH Digital audio path control */ \

 0x0000, /* 6 DSK6713_AIC23_POWERDOWN Power down control */ \

 0x0043, /* 7 DSK6713_AIC23_DIGIF Digital audio interface format */ \

 0x0081, /* 8 DSK6713_AIC23_SAMPLERATE Sample rate control */ \

 0x0001 /* 9 DSK6713_AIC23_DIGACT Digital interface activation */ \

};

/*

 * main() - Main code routine, initializes BSL and generates tone

 */

void main()

{

 DSK6713_AIC23_CodecHandle hCodec;

 int l_input, r_input, l_output, r_output;

 /* Initialize the board support library, must be called first */

 DSK6713_init();

 /* Start the codec */

 hCodec = DSK6713_AIC23_openCodec(0, &config);

 DSK6713_AIC23_setFreq(hCodec, 3);

 while(1)

 { /* Read a sample to the left channel */

 while (!DSK6713_AIC23_read(hCodec, &l_input));

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 92

 /* Read a sample to the right channel */

 while (!DSK6713_AIC23_read(hCodec, &r_input));

 l_output=IIR_FILTER(&filter_Coeff ,l_input);

 r_output=l_output;

 /* Send a sample to the left channel */

 while (!DSK6713_AIC23_write(hCodec, l_output));

 /* Send a sample to the right channel */

 while (!DSK6713_AIC23_write(hCodec, r_output));

 }

 /* Close the codec */

 DSK6713_AIC23_closeCodec(hCodec);

}

signed int IIR_FILTER(const signed int * h, signed int x1)

{

 static signed int x[6] = { 0, 0, 0, 0, 0, 0 }; /* x(n), x(n-1), x(n-2). Must be static */

 static signed int y[6] = { 0, 0, 0, 0, 0, 0 }; /* y(n), y(n-1), y(n-2). Must be static */

 int temp=0;

 temp = (short int)x1; /* Copy input to temp */

 x[0] = (signed int) temp; /* Copy input to x[stages][0] */

 temp = ((int)h[0] * x[0]) ; /* B0 * x(n) */

 temp += ((int)h[1] * x[1]); /* B1/2 * x(n-1) */

 temp += ((int)h[1] * x[1]); /* B1/2 * x(n-1) */

 temp += ((int)h[2] * x[2]); /* B2 * x(n-2) */

 temp -= ((int)h[4] * y[1]); /* A1/2 * y(n-1) */

 temp -= ((int)h[4] * y[1]); /* A1/2 * y(n-1) */

 temp -= ((int)h[5] * y[2]); /* A2 * y(n-2) */

 /* Divide temp by coefficients[A0] */

 temp >>= 15;

 if (temp > 32767)

 {

 temp = 32767;

 }

 else if (temp < -32767)

 {

 temp = -32767;

 }

 y[0] = temp ;

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 93

 /* Shuffle values along one place for next time */

 y[2] = y[1]; /* y(n-2) = y(n-1) */

 y[1] = y[0]; /* y(n-1) = y(n) */

 x[2] = x[1]; /* x(n-2) = x(n-1) */

 x[1] = x[0]; /* x(n-1) = x(n) */

 /* temp is used as input next time through */

 return (temp<<2);

}

PROCEDURE:

 Switch on the DSP board.

 Open the Code Composer Studio.

 Create a new project

Project  New (File Name. pjt , Eg: FIR.pjt)

 Initialize on board codec.

―Kindly refer the Topic Configuration of 6713 Codec using BSL‖

 Add the given above ‗C‘ source file to the current project (remove codec.c source

file from the project if you have already added).

 Connect the speaker jack to the input of the CRO.

 Build the program.

 Load the generated object file(*.out) on to Target board.

 Run the program using F5.

RESULT:

Observe the waveform that appears on the CRO screen.

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 94

EXP.No:

DISCRETE COSINE TRANSFORM

Aim: To observe transformed and inverse transformed sequences and images using DCT

EQUIPMENT:

PC with windows(95/98/xp/NT/2000)

MATLAB software

PROGRAM:

DCT Program for Sequence

 function [Xk] =dctu(xn)

% Discrete Cosine Transform

% xn = Input time domain signal

% Xk = Output frequency domain signal

 % For ex:

 xn = randi([0 1000],[1 10]);

% Xk = dctu(xn);

N=length(xn);

Cf=[1/sqrt(2),ones(1,N-1)];

for f=0: N-1;

 for x=0: N-1;

 W(f+1, x+1)=cos((2*x+1)*pi*f/(2*N)); %matrix kernel

 end

end

Xk=W*xn';

Xk=(sqrt(2/N)*Xk.*Cf')'; % Final result

disp('DCT Result:'); Xk

subplot(3,2,1)

p=[0:N-1];

stem(p,xn); title('Input Sequence');

subplot(3,2,2)

stem(p,Xk,'fill'); title('DCT of Input sequence');

subplot(3,2,[3,4])

stem(p,abs(Xk),'fill'); title('Magnitude');

phaX = angle(Xk);

subplot(3,2,[5,6])

stem(p,Xk,'fill'); title('Phase plot');

AVN INSTITUTE OF ENGINEERING AND TECHNOLOGY ECE Dept

 Page 95

RESULT

