

UNIT -1

The Worlds of Database Systems

INTRODUCTION TO BASIC CONCEPTS OF DATABASE SYSTEMS:

What is Data?

The raw facts are called as data. The word “raw” indicates that they have not been processed.

Ex: For example 89 is the data.

What is information?

The processed data is known as information.

Ex: Marks: 89; then it becomes information.

What is Knowledge?

1. Knowledge refers to the practical use of information.

2. Knowledge necessarily involves a personal experience.

DATA/INFORMATION PROCESSING:

The process of converting the data (raw facts) into meaningful information is called as

data/information processing.

When

When

Data Information Knowledge

 Processed Processed

Note: In business processing knowledge is more useful to make decisions for any organization.

Page 1

DIFFERENCE BETWEEN DATA AND INFORMATION:

DATA INFORMATION

1.Raw facts 1.Processed data

2. It is in unorganized form 2. It is in organized form

3. Data doesn’t help in

decision

3. Information helps in

decision

making process making process

FILE ORIENTED APPROACH:

The earliest business computer systems were used to process business records and

produce information. They were generally faster and more accurate than equivalent manual

systems. These systems stored groups of records in separate files, and so they were called file

processing systems.

1. File system is a collection of data. Any management with the file system, user has to

write the procedures

2. File system gives the details of the data representation and Storage of data.

3. In File system storing and retrieving of data cannot be done efficiently.

4. Concurrent access to the data in the file system has many problems like a Reading the

file while other deleting some information, updating some information

5. File system doesn’t provide crash recovery mechanism.

Eg. While we are entering some data into the file if System crashes then content of the

file is lost.

6. Protecting a file under file system is very difficult.

The typical file-oriented system is supported by a conventional operating system.

Permanent records are stored in various files and a number of different application programs

are written to extract records from and add records to the appropriate files.

Page 2

DISADVANTAGES OF FILE-ORIENTED SYSTEM:

The following are the disadvantages of File-Oriented System:

Data Redundancy and Inconsistency:

Since files and application programs are created by different programmers over a long

period of time, the files are likely to be having different formats and the programs may be

written in several programming languages. Moreover, the same piece of information may be

duplicated in several places. This redundancy leads to higher storage and access cost. In

addition, it may lead to data inconsistency.

Difficulty in Accessing Data:

The conventional file processing environments do not allow needed data to be retrieved

in a convenient and efficient manner. Better data retrieval system must be developed for

general use.

Data Isolation:

Since data is scattered in various files, and files may be in different formats, it is

difficult to write new application programs to retrieve the appropriate data.

Concurrent Access Anomalies:

In order to improve the overall performance of the system and obtain a faster response

time, many systems allow multiple users to update the data simultaneously. In such an

environment, interaction of concurrent updates may result in inconsistent data.

Security Problems:

Not every user of the database system should be able to access all the data. For

example, in banking system, payroll personnel need only that part of the database that has

information about various bank employees. They do not need access to information about

customer accounts. It is difficult to enforce such security constraints.

Integrity Problems:

The data values stored in the database must satisfy certain types of consistency

constraints. For example, the balance of a bank account may never fall below a prescribed

amount. These constraints are enforced in the system by adding appropriate code in the various

Page 3

application programs. When new constraints are added, it is difficult to change the programs to

enforce them. The problem is compounded when constraints involve several data items for

different files.

Atomicity Problem:

A computer system like any other mechanical or electrical device is subject to failure.

In many applications, it is crucial to ensure that once a failure has occurred and has been

detected, the data are restored to the consistent state existed prior to the failure

Example:

Consider part of a savings-bank enterprise that keeps information about all customers

and savings accounts. One way to keep the information on a computer is to store it in operating

system files. To allow users to manipulate the information, the system has a number of

application programs that manipulate the files, including:

 A program to debit or credit an account

 A program to add a new account

 A program to find the balance of an account

 A program to generate monthly statements

Programmers wrote these application programs to meet the needs of the bank. New

application programs are added to the system as the need arises. For example, suppose that the

savings bank decides to offer checking accounts.

 As a result, the bank creates new permanent files that contain information about all the

checking accounts maintained in the bank, and it may have to write new application programs

to deal with situations that do not arise in savings accounts, such as overdrafts. Thus, as time

goes by, the system acquires more files and more application programs. The system stores

permanent records in various files, and it needs different

 Application programs to extract records from, and add records to, the appropriate files.

Before database management systems (DBMS) came along, organizations usually stored

information in such systems. Organizational information in a file-processing system has a

number of major disadvantages:

Page 4

1. Data Redundancy and Inconsistency:

The address and telephone number of a particular customer may appear in a file that

consists of savings-account records and in a file that consists of checking-account records. This

redundancy leads to higher storage and access cost. In, it may lead to data inconsistency; that

is, the various copies of the same data may no longer agree. For example, a changed customer

address may be reflected in savings-account records but not elsewhere in the system.

2. Difficulty in Accessing Data:

Suppose that one of the bank officers needs to find out the names of all customers who

live within a particular postal-code area. The officer asks the data-processing department to

generate such a list. Because there is no application program to generate that. The bank officer

has now two choices: either obtain the list of all customers and extract the needed information

manually or ask a system programmer to write the necessary application program. Both

alternatives are obviously unsatisfactory.

3. Data Isolation:

Because data are scattered in various files and files may be in different formats, writing

new application programs to retrieve the appropriate data is difficult.

4. Integrity Problems:

The balance of a bank account may never fall below a prescribed amount (say, $25).

Developers enforce these constraints in the system by adding appropriate code in the various

application programs. However, when new constraints are added, it is difficult to change the

programs to enforce them. The problem is compounded when constraints involve several data

items from different files.

5. Atomicity Problems:

A computer system, like any other mechanical or electrical device, is subject to failure.

In many applications, it is crucial that, if a failure occurs, the data be restored to the consistent

state that existed prior to the failure. Consider a program to transfer $50 from account A to

account B. If a system failure occurs during the execution of the program, it is possible that the

$50 was removed from account A but was not credited to account B, resulting in an inconsistent

database state. Clearly, it is essential to database consistency that either both the credit and

debit occur, or that neither occur. That is, the funds transfer must be atomic—it must happen in

its entirety or not at all. It is difficult to ensure atomicity in a conventional file-processing

system.

6. Concurrent-Access Anomalies:

For the sake of overall performance of the system and faster response, many systems

allow multiple users to update the data simultaneously. In such an environment, interaction of

concurrent updates may result in inconsistent data. Consider bank account A, containing $500.

If two customers withdraw funds (say $50 and $100 respectively) from account A at about the

same time, the result of the concurrent executions may leave the account in an incorrect (or

inconsistent) state. Suppose that the programs executing on behalf of each withdrawal read the

old balance, reduce that value by the amount being withdrawn, and write the result back. If the

two programs run concurrently, they may both read the value $500, and write back $450 and

$400, respectively. Depending on which one writes the value last, the account may contain

$450 or $400, rather than the correct value of $350. To guard against this possibility, the system

must maintain some form of supervision. But supervision is difficult to provide because data

may be accessed by many different application programs that have not been coordinated

previously.

7. Security Problems:

Not every user of the database system should be able to access all the data. For

example, in a banking system, payroll personnel need to see only that part of the database that

has information about the various bank employees. They do not need access to information

about customer accounts. But, since application programs are added to the system in an ad hoc

manner, enforcing such security constraints is difficult. These difficulties, among others,

prompted the development of database systems.

INTRODUCTION TO DATABASES:

History of Database Systems:

1950s and early 1960s:

 Magnetic tapes were developed for data storage

 Data processing tasks such as payroll were automated, with data stored on tapes.

 Data could also be input from punched card decks, and output to printers.

 Late 1960s and 1970s: The use of hard disks in the late 1960s changed the scenario for

data processing greatly, since hard disks allowed direct access to data.

 With disks, network and hierarchical databases could be created that allowed data

structures such as lists and trees to be stored on disk. Programmers could construct and

manipulate these data structures.

 With disks, network and hierarchical databases could be created that allowed data

structures such as lists and trees to be stored on disk. Programmers could construct and

manipulate these data structures.

 In the 1970’s the EF CODD defined the Relational Model.

In the 1980’s:

 Initial commercial relational database systems, such as IBM DB2, Oracle, Ingress, and

DEC Rdb, played a major role in advancing techniques for efficient processing of

declarative queries.

 In the early 1980s, relational databases had become competitive with network and

hierarchical database systems even in the area of performance.

 The 1980s also saw much research on parallel and distributed databases, as well as

initial work on object-oriented databases.

Early 1990s:

 The SQL language was designed primarily in the 1990’s.

 And this is used for the transaction processing applications.

 Decision support and querying re-emerged as a major application area for databases.

 Database vendors also began to add object-relational support to their databases.

Late 1990s:

 The major event was the explosive growth of the World Wide Web.

 Databases were deployed much more extensively than ever before. Database systems

now had to support very high transaction processing rates, as well as very high

reliability and 24 * 7 availability (availability 24 hours a day, 7 days a week, meaning no

downtime for scheduled maintenance activities).

 Database systems also had to support Web interfaces to data.

The Evolution of Database systems:

The Evolution of Database systems are as follows:

1. File Management System

2. Hierarchical database System

3. Network Database System

4. Relational Database System

File Management System:

The file management system also called as FMS in short is one in which all data is

stored on a single large file. The main disadvantage in this system is searching a record or data

takes a long time. This lead to the introduction of the concept, of indexing in this system. Then

also the FMS system had lot of drawbacks to name a few like updating or modifications to the

data cannot be handled easily, sorting the records took long time and so on. All these drawbacks

led to the introduction of the Hierarchical Database System.

Hierarchical Database System:

The previous system FMS drawback of accessing records and sorting records which

took a long time was removed in this by the introduction of parent-child relationship between

records in database. The origin of the data is called the root from which several branches have

data at different levels and the last level is called the

leaf. The main drawback in this was if there is any modification or addition made to the

structure then the whole structure needed alteration which made the task a tedious one. In order

to avoid this next system took its origin which is called as the Network Database System.

Fig: Hierarchical Database System

Network Database System:

In this the main concept of many-many relationships got introduced. But this also

followed the same technology of pointers to define relationships with a difference in this made

in the introduction if grouping of data items as sets.

Relational Database System:

In order to overcome all the drawbacks of the previous systems, the Relational

Database System got introduced in which data get organized as tables and each record forms a

row with many fields or attributes in it. Relationships between tables are also formed in this

system.

DATABASE:

A database is a collection of related data.

(OR)

A database is a collection of information that is organized so that it can be easily accessed,

managed and updated.

Examples / Applications of Database Systems:

The following are the various kinds of applications/organizations uses databases for their

business processing activities in their day-to-day life. They are:

1. Banking: For customer information, accounts, and loans, and banking transactions.

2. Airlines: For reservations and schedule information. Airlines were among the first to use

databases in a geographically distributed manner—terminals situated around the world

accessed the central database system through phone lines and other data networks.

3. Universities: For student information, course registrations, and grades.

4. Credit Card Transactions: For purchases on credit cards and generation of monthly

statements.

5. Telecommunication: For keeping records of calls made, generating monthly bills,

maintaining balances on prepaid calling cards, and storing information about the

communication networks.

6. Finance: For storing information about holdings, sales, and purchases of financial

instruments such as stocks and bonds.

7. Sales: For customer, product, and purchase information.

8. Manufacturing: For management of supply chain and for tracking production of items in

factories, inventories of items in warehouses/stores, and orders for items.

9. Human resources: For information about employees, salaries, payroll taxes and benefits,

and for generation of paychecks.

10. Railway Reservation Systems: For reservations and schedule information.

11. Web: For access the Back accounts and to get the balance amount.

12. E –Commerce: For Buying a book or music CD and browse for things like watches,

mobiles from the Internet.

CHARACTERISTICS OF DATABASE:

The database approach has some very characteristic features which are discussed in detail

below:

Structured and Described Data:

Fundamental feature of the database approach is that the database system does not only

contain the data but also the complete definition and description of these data. These

descriptions are basically details about the extent, the structure, the type and the format of all

data and, additionally, the relationship between the data. This kind of stored data is called

metadata ("data about data").

Separation of Data and Applications:

Application software does not need any knowledge about the physical data storage like

encoding, format, storage place, etc. It only communicates with the management system of a

database (DBMS) via a standardized interface with the help of a standardized language like

SQL. The access to the data and the metadata is entirely done by the DBMS. In this way all the

applications can be totally separated from the data.

Data Integrity:

Data integrity is a byword for the quality and the reliability of the data of a database

system. In a broader sense data integrity includes also the protection of the database from

unauthorized access (confidentiality) and unauthorized changes. Data reflect facts of the real

world.

Transactions:

A transaction is a bundle of actions which are done within a database to bring it from one

consistent state to a new consistent state. In between the data are inevitable inconsistent. A

transaction is atomic what

means that it cannot be divided up any further. Within a transaction all or none of the actions

need to be carried out. Doing only a part of the actions would lead to an inconsistent database

state.

Example: One example of a transaction is the transfer of an amount of money from one

bank account to another.

Data Persistence:

Data persistence means that in a DBMS all data is maintained as long as it is not deleted

explicitly. The life span of data needs to be determined directly or indirectly be the user and

must not be dependent on system features. Additionally data once stored in a database must not

be lost. Changes of a database which are done by a transaction are persistent. When a

transaction is finished even a system crash cannot put the data in danger

TYPES OF DATABASES:

Database can be classified according to the following factors. They are:

1. Number of Users

2. Database Location

3. Expected type

4. Extent of use

1. Based on number of Users:

According to the number of users the databases can be classified into following types. They

are :

a). Single user b). Multiuser

Single user database:
 Single user database supports only one user at a time.

 Desktop or personal computer database is an example for single user database.

Multiuser database:
 Multi user database supports multiple users at the same time.

 Workgroup database and enterprise databases are examples for multiuser database.

Workgroup database:

If the multiuser database supports relatively small number of users (fewer than 50)

within an organization is called as Workgroup database.

Enterprise database:

If the database is used by the entire organization and supports multiple users (more than

50) across many departments is called as Enterprise database.

2. Based on Location:

According to the location of database the databases can be classified into following types.

They are:

a).CentralizedDatabase

b).Distributed Database

Centralized Database:

It is a database that is located, stored, and maintained in a single location. This location

is most often a central computer or database system, for example a desktop or server CPU, or a

mainframe computer. In most cases, a centralized database would be used by an organization

(e.g. a business company) or an institution (e.g. a university.)

Distributed Database:

A distributed database is a database in which storage devices are not all attached to a

common CPU. It may be stored in multiple computers located in the same physical location,

or may be dispersed over a network of interconnected computers.

INTRODUCTION TO DATABASE-MANAGEMENT SYSTEM:

Database Management System:

 A database-management system (DBMS) is a collection of interrelated data and a set of

programs to access those data.

 The DBMS is a general purpose software system that facilitates the process of defining

constructing and manipulating databases for various applications.

Goals of DBMS:

The primary goal of a DBMS is to provide a way to store and retrieve database

information that is both convenient and efficient

1. Manage large bodies of information

2. Provide convenient and efficient ways to store and access information

3. Secure information against system failure or tampering

4. Permit data to be shared among multiple users

https://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/Computers
http://en.wikipedia.org/wiki/Computer_storage
http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Central_processing_unit

Properties of DBMS:

1. A Database represents some aspect of the real world. Changes to the real world reflected in

the database.

2. A Database is a logically coherent collection of data with some inherent meaning.

3. A Database is designed and populated with data for a specific purpose.

Need of DBMS:

1. Before the advent of DBMS, organizations typically stored information using a “File

Processing Systems”.

Example of such systems is File Handling in High Level Languages like C, Basic and COBOL

etc., these systems have Major disadvantages to perform the Data Manipulation. So to

overcome those drawbacks now we are using the DBMS.

2. Database systems are designed to manage large bodies of information.

3. In addition to that the database system must ensure the safety of the information stored,

despite system crashes or attempts at unauthorized access. If data are to be shared among

several users, the system must avoid possible anomalous results.

ADVANTAGES OF A DBMS OVER FILE SYSTEM:

Using a DBMS to manage data has many advantages:

Data Independence:

Application programs should be as independent as possible from details of data

representation and storage. The DBMS can provide an abstract view of the data to insulate

application code from such details.

Efficient Data Access:

A DBMS utilizes a variety of sophisticated techniques to store and retrieve data

efficiently. This feature is especially important if the data is stored on external storage devices.

Data Integrity and Security:

If data is always accessed through the DBMS, the DBMS can enforce integrity

constraints on the data. For example, before inserting salary information for an employee, the

DBMS can check that the department budget is not exceeded. Also, the DBMS can enforce

access controls that govern what data is visible to different classes of users.

Concurrent Access and Crash Recovery:

A database system allows several users to access the database concurrently. Answering

different questions from different users with the same (base) data is a central aspect of an

information system. Such concurrent use of data increases the economy of a system.

An example for concurrent use is the travel database of a bigger travel agency. The

employees of different branches can access the database concurrently and book journeys for

their clients. Each travel agent sees on his interface if there are still seats available for a specific

journey or if it is already fully booked.

A DBMS also protects data from failures such as power failures and crashes etc. by the

recovery schemes such as backup mechanisms and log files etc.

Data Administration:

When several users share the data, centralizing the administration of data can offer

significant improvements. Experienced professionals, who understand the nature of the data

being managed, and how different groups of users use it, can be responsible for organizing the

data representation to minimize redundancy and fine-tuning the storage of the data to make

retrieval efficient.

Reduced Application Development Time:

DBMS supports many important functions that are common to many applications

accessing data stored in the DBMS. This, in conjunction with the high-level interface to the

data, facilitates quick development of applications. Such applications are also likely to be more

robust than applications developed from scratch because many important tasks are handled by

the DBMS instead of being implemented by the application.

DISADVANTAGES OF DBMS:

Danger of a Overkill:

For small and simple applications for single users a database system is often not

advisable.

Complexity:

A database system creates additional complexity and requirements. The supply and

operation of a database management system with several users and databases is quite costly and

demanding.

Qualified Personnel:

`The professional operation of a database system requires appropriately trained staff.

Without a qualified database administrator nothing will work for long.

Costs:

Through the use of a database system new costs are generated for the system itself but

also for additional hardware and the more complex handling of the system.

Lower Efficiency:

A database system is a multi-use software which is often less efficient than specialized

software which is produced and optimized exactly for one problem.

DATABASE USERS & DATABASE ADMINISTRATORS:

People who work with a database can be categorized as database users or database

administrators.

Database Users:

There are four different types of database-system users, differentiated by the way they

expect to interact with the system.

Naive users:

Naive users are unsophisticated users who interact with the system by invoking one of the

application programs that have been written previously.

For example, a bank teller who needs to transfer $50 from account A to account B

invokes a program called transfer. This program asks the teller for the amount of money to be

transferred, the account from which the money is to be transferred, and the account to which the

money is to be transferred.

Application programmers:

Application programmers are computer professionals who write application programs.

Application programmers can choose from many tools to develop user interfaces. Rapid

application development (RAD) tools are tools that enable an application programmer to

construct forms and reports without writing a program.

Sophisticated users:

Sophisticated users interact with the system without writing programs. Instead, they

form their requests in a database query language. They submit each such query to a query

processor, whose function is to break down DML statements into instructions that the storage

manager understands. Analysts who submit queries to explore data in the database fall in this

category.

Specialized users:

Specialized users are sophisticated users who write specialized database applications

that do not fit into the traditional data-processing framework.

Database Administrator:

One of the main reasons for using DBMSs is to have central control of both the data and

the programs that access those data. A person who has such central control over the system is

called a database administrator (DBA).

Database Administrator Functions/Roles:

The functions of a DBA include:

Schema definition:

The DBA creates the original database schema by executing a set of data definition

statements in the DDL, Storage structure and access-method definition.

Schema and physical-organization modification:

The DBA carries out changes to the schema and physical organization to reflect the

changing needs of the organization, or to alter the physical organization to improve

performance.

Granting of authorization for data access:

By granting different types of authorization, the database administrator can regulate

which parts of the database various users can access. The authorization information is kept in a

special system structure that the database system consults whenever someone attempts to access

the data in the system.

Routine maintenance:

Examples of the database administrator’s routine maintenance activities are:

1. Periodically backing up the database, either onto tapes or onto remote servers, to prevent loss

of data in case of disasters such as flooding.

2. Ensuring that enough free disk space is available for normal operations, and upgrading disk

space as required.

3. Monitoring jobs running on the database and ensuring that performance is not degraded by

very expensive tasks submitted by some users.

LEVELS OF ABSTRACTION IN A DBMS:

Hiding certain details of how the data are stored and maintained. A major purpose of

database system is to provide users with an “Abstract View” of the data. In DBMS there are 3

levels of data abstraction. The goal of the abstraction in the DBMS is to separate the users

request and the physical storage of data in the database.

Levels of Abstraction:

Physical Level:

 The lowest Level of Abstraction describes “How” the data are actually stored.

 The physical level describes complex low level data structures in detail.

Logical Level:

 This level of data Abstraction describes “What” data are to be stored in the database and

what relationships exist among those data.

 Database Administrators use the logical level of abstraction.

View Level:

 It is the highest level of data Abstracts that describes only part of entire database.

 Different users require different types of data elements from each database.

 The system may provide many views for the some database.

THREE SCHEMA ARCHITECTURE:

Schema:

The overall design of the database is called the “Schema” or “Meta Data”. A database

schema corresponds to the programming language type definition. The value of a variable in

programming language corresponds to an “Instance” of a database Schema.

Three Schema Architecture:

The goal of this architecture is to separate the user applications and the physical

database. In this architecture, schemas can be defined at the following three levels:

1. The internal level has an internal schema, which describes the physical storage structure of

the database. The internal schema uses a physical data model and describes the complete

details of data storage and access paths for the database.

2. The conceptual level has a conceptual schema, which describes the structure of the whole

database for a community of users. The conceptual schema hides the details of physical

storage structures and concentrates on describing entities, data types, relationships, user

operations, and constraints. A high-level data model or an implementation data model can

be used at this level.

3. The external or view level includes a number of external schemas or user views. Each

external schema describes the part of the database that a particular user group is interested in

and hides the rest of the database from that user group. A high-level data model or an

implementation data model can be used at this level.

Fig: Three-Schema Architecture

DATA INDEPENDENCE:

 A very important advantage of using DBMS is that it offers Data Independence.

 The ability to modify a scheme definition in one level without affecting a scheme

definition in a higher level is called data independence.

 There are two kinds:

1. Physical Data Independence

2. Logical Data Independence

Physical Data Independence:

 The ability to modify the physical schema without causing application programs to be

rewritten

 Modifications at this level are usually to improve performance.

Fig: Data Independence

Logical Data Independence:

 The ability to modify the conceptual schema without causing application programs to be

rewritten

 Usually done when logical structure of database is altered

 Logical data independence is harder to achieve as the application programs are usually

heavily dependent on the logical structure of the data.

DATABASE SYSTEM STRUCTURE:

A database system is partitioned into modules that deal with each of the responsibilities

of the overall system. The functional components of a database system can be broadly divided

into the storage manager and the query processor components.

The storage manager is important because databases typically require a large amount of

storage space. Some Big organizations Database ranges from Giga bytes to Tera bytes. So the

main memory of computers cannot store this much information, the information is stored on

disks. Data are moved between disk storage and main memory as needed.

The query processor also very important because it helps the database system simplify

and facilitate access to data. So quick processing of updates and queries is important. It is the

job of the database system to translate updates and queries written in a nonprocedural language,

StorageManager:

A storage manager is a program module that provides the interface between the low

level data stored in the database and the application programs and queries submitted to the

system. The storage manager is responsible for the interaction with the file manager. The

storage manager translates the various DML statements into low-level file-system commands.

Thus, the storage manager is responsible for storing, retrieving, and updating data in the

database.

Storage Manager Components:

Authorization and integrity manager which tests for the satisfaction of integrity

constraints and checks the authority of users to access data.

Transaction manager which ensures that the database itself remains in a consistent

state despite system failures, and that concurrent transaction executions proceed without

conflicting.

File manager: which manages the allocation of space on disk storage and the data

structures used to represent information stored on disk.

Buffer manager which is responsible for fetching data from disk storage into main

memory. Storage manager implements several data structures as part of the physical system

implementation. Data files are used to store the database itself. Data dictionary is used to stores

metadata about the structure of the database, in particular the schema of the database.

Query Processor Components:

DDL interpreter: It interprets DDL statements and records the definitions in the data

dictionary.

DML compiler: It translates DML statements in a query language into an evaluation plan

consisting of low-level instructions that the query evaluation engine understands.

Query evaluation engine: It executes low-level instructions generated by the DML compiler.

Application Architectures:

Most users of a database system today are not present at the site of the database system,

but connect to it through a network. We can therefore differentiate between client machines, on

which remote database users’ work, and server machines, on which the database system runs.

Database applications are usually partitioned into two or three parts. They are:

1. Two – Tier Architecture

2. Three – Tier Architecture.

Two-Tier Architecture:

The application is partitioned into a component that resides at the client machine,

which invokes database system functionality at the server machine through query language

statements. Application program interface standards like ODBC and JDBC are used for

interaction between the client and the server.

Three-Tier Architecture:

The client machine acts as merely a front end and does not contain any direct database

calls. Instead, the client end communicates with an application server, usually through forms

interface. The application server in turn communicates with a database system to access data.

The business logic of the application, which says what actions to carry out under what

conditions, is embedded in the application server, instead of being distributed across multiple

clients. Three-tier applications are more appropriate for large applications, and for applications

that run on the World Wide Web.

DATABASE DESIGN:

The database design process can be divided into six steps. The ER Model is most

relevant to the first three steps. Next three steps are beyond the ER Model.

1. Requirements Analysis:

The very first step in designing a database application is to understand what data is to be

stored in the database, what applications must be built on top of it, and what operations are most

frequent and subject to performance requirements. The database designers collect information

of the organization and analyzer, the information to identify the user’s requirements. The

database designers must find out what the users want from the database.

2. Conceptual Database Design:

Once the information is gathered in the requirements analysis step a conceptual database design

is developed and is used to develop a high level description of the data to be stored in the

database, along with the constraints that are known to hold over this data. This step is often

carried out using the ER model, or a similar high-level data model.

3. Logical Database Design:

In this step convert the conceptual database design into a database schema (Logical

Database Design) in the data model of the chosen DBMS. We will only consider relational

DBMSs, and therefore, the task in the

logical design step is to convert an ER schema into a relational database schema. The result is a

conceptual schema, sometimes called the logical schema, in the relational data model.

Beyond the ER Design:

The first three steps are more relevant to the ER Model. Once the logical scheme is

defined designer consider the physical level implementation and finally provide certain

security measures. The remaining three steps of database design are briefly described below:

4. Schema Refinement:

The fourth step in database design is to analyze the collection of relations in our

relational database schema to identify potential problems, and to refine it. In contrast to the

requirements analysis and conceptual design steps, which are essentially subjective, schema

refinement can be guided by some elegant and powerful theory.

5. Physical Database Design:

In this step we must consider typical expected workloads that our database must

support and further refine the database design to ensure that it meets desired performance

criteria. This step may simply involve building indexes on some tables and clustering some

tables, or it may involve a substantial redesign of parts of the database schema obtained from

the earlier design steps.

6. Security Design:

The last step of database design is to include security features. This is required to avoid

unauthorized access to database practice after all the six steps. We required Tuning step in

which all the steps are interleaved and repeated until the design is satisfactory.

DBMS FUNCTIONS:

 DBMS performs several important functions that guarantee the integrity and consistency

of the data in the database.

 Those functions transparent to end users and can be accessed only through the use of

DBMS. They include:

 Data Dictionary Management

 Data Storage Management

 Data transformation and Presentation

 Security Management

 Multiple Access Control

 Backup and Recovery Management

 Data Integrity Management

 Database Access Languages

 Databases Communication Interfaces

Data Dictionary Management:

 DBMS stores definitions of database elements and their relationship (Metadata) in the data

dictionary.

 The DBMS uses the data dictionary to look up the required data component structures and

relationships.

 Any change made in database structure is automatically recorded in the data dictionary.

Data Storage Management:

 Modern DBMS provides storage not only for data but also for related data entities.

 Data Storage Management is also important for database “performance tuning”.

 Performance tuning related to activities that make database more efficiently.

Data Transformation and Presentation:

 DBMS transforms entered data to confirm to required data structures.

 DBMS formats the physically retrieved data to make it confirms to user’s logical

expectations.

 DBMS also presents the data in the user’s expected format.

Security Management:

 DBMS creates a security system that enforces the user security and data privacy.

 Security rules determines which users can access the database, which data items each user

can access etc.

 DBA and authenticated user logged to DBMS through username and password or

through Biometric authentication such as Finger print and face reorganization etc.

Multiuser Access Control:

 To provide data integrity and data consistency, DBMS uses sophisticated algorithms to

ensure that multiple users can access the database concurrently without compromising

the integrity of database.

Backup and Recovery Management:

 DBMS provides backup and recovery to ensure data safety and integrity.

 Recovery management deals with the recovery of database after failure such as bad

sector in the disk or power failure. Such capability is critical to preserve database

integrity.

Data Integrity Management:

 DBMS provides and enforces integrity rules, thus minimizing data redundancy and

maximizing data consistency.

 Ensuring data integrity is especially important in transaction- oriented database systems.

Database Access Languages:

 DBMS provides data access through a query language.

 A query language is a non-procedural language i.e. it lets the user specify what

must be done without specifying how it is to be done.

 SQL is the default query language for data access.

Databases Communication Interfaces:

 Current DBMS’s are accepting end-user requests via different network environments.

 For example, DBMS might provide access to database via Internet through the use of

web browsers such as Mozilla Firefox or Microsoft Internet Explorer.

What is Schema?

A database schema is the skeleton structure that represents the logical view of the entire

database. (or)

The logical structure of the database is called as

Database Schema. (or)

The overall design of the database is the database schema.

 It defines how the data is organized and how the relations among them are associated.

 It formulates all the constraints that are to be applied on the data.

EG:

STUDENT

SID SNAME PHNO

What is Instance?

The actual content of the database at a particular

point in time. (Or)

The data stored in the database at any given time is an instance of the database

Student

Sid Name phno

1201 Venkat 9014901442

1202 teja 9014774422

In the above table 1201, 1202, Venkat etc are said to be instance of student table.

Difference between File system & DBMS:

 File system DBMS

1.

File system is a collection of data. Any

management

1. DBMS is a collection of data and user is

not

with the file system, user has to write the procedures

required to write the procedures for managing

the

 database.

2.

File system gives the details of

the data 2. DBMS provides an abstract view of data that hides

representation and Storage of data. the details.

3.

In File system storing and retrieving of data

cannot

3. DBMS is efficient to use since there are

wide

be done efficiently.

varieties of sophisticated techniques to store

and

 retrieve the data.

4.

Concurrent access to the data in the file system

has 4. DBMS takes care of Concurrent access using some

many problems like : Reading the file while other form of locking.

deleting some information, updating some

information

5.

File system doesn’t provide crash

recovery 5. DBMS has crash recovery mechanism, DBMS

mechanism. protects user from the effects of system failures.

Eg. While we are entering some data into the file if

System crashes then content of the file is lost

6. Protecting a file under file system is very difficult. 6. DBMS has a good protection mechanism.

UNIT-II

Relational Algebra and Calculus

Relational Algebra:

• Basic operations:

– Selection () Selects a subset of rows from relation.

– Projection () Deletes unwanted columns from relation.

– Cross-product () Allows us to combine two relations.

– Set-difference () Tuples in reln. 1, but not in reln. 2.

– Union () Tuples in reln. 1 and in reln. 2.

• Additional operations:

– Intersection, join, division, renaming: Not essential, but (very!) useful.

• Since each operation returns a relation, operations can be composed! (Algebra is

“closed”.)

Projection:

• Deletes attributes that are not in projection list.

• Schema of result contains exactly the fields in the projection list, with the same names

that they had in the (only) input relation.

• Projection operator has to eliminate duplicates! (Why??)

– Note: real systems typically don’t do duplicate elimination unless the user

explicitly asks for it. (Why not?)

Selection

• Selects rows that satisfy selection condition.

• No duplicates in result! (Why?)

• Schema of result identical to schema of (only) input relation.

• Result relation can be the input for another relational algebra operation! (Operator

composition.)

Set Operations:

Union, Intersection, Set-Difference

• All of these operations take two input relations, which must be union-compatible:

 Same number of fields.

– `Corresponding’ fields have the same type.

• What is the schema of result?

Cross-Product

• Each row of S1 is paired with each row of R1.

• Result schema has one field per field of S1 and R1, with field names `inherited’ if

possible.

– Conflict: Both S1 and R1 have a field called sid.

Joins:

• Condition Join:

• Result schema same as that of cross-product.

• Fewer tuples than cross-product, might be able to compute more efficiently

• Sometimes called a theta-join.

• Equi-Join: A special case of condition join where the condition c contains only

equalities.

• Result schema similar to cross-product, but only one copy of fields for which equality is

specified.

• Natural Join: Equijoin on all common fields.

Examples of Division A/B

Find names of sailors who’ve reserved boat #103

• Solution 1:

• Find names of sailors who’ve reserved a red boat

• Information about boat color only available in Boats; so need an extra join:

Find sailors who’ve reserved a red or a green boat

• Can identify all red or green boats, then find sailors who’ve reserved one of these boats:

Find sailors who’ve reserved a red and a green boat

• Previous approach won’t work! Must identify sailors who’ve reserved red boats, sailors

who’ve reserved green boats, then find the intersection (note that sid is a key for Sailors):

Relational Calculus:

• Comes in two flavors: Tuple relational calculus (TRC) and Domain relational calculus

(DRC).

• Calculus has variables, constants, comparison ops, logical connectives and quantifiers.

– TRC: Variables range over (i.e., get bound to) tuples.

– DRC: Variables range over domain elements (= field values).

– Both TRC and DRC are simple subsets of first-order logic.

• Expressions in the calculus are called formulas. An answer tuple is essentially an

assignment of constants to variables that make the formula evaluate to true.

Domain Relational Calculus:

• Query has the form:

DRC Formulas

• Atomic formula:

–, or X op Y, or X op constant op is one of

• Formula:

– an atomic formula, or

– , where p and q are formulas, or

– , where variable X is free in p(X), or

– , where variable X is free in p(X)

• The use of quantifiers and is said to bind X.

– A variable that is not bound is free.

Free and Bound Variables

• The use of quantifiers and in a formula is said to bind X.

– A variable that is not bound is free.

• Let us revisit the definition of a query:

Find all sailors with a rating above 7

• The condition ensures that the domain variables I, N, T and A are bound to fields of the

same Sailors tuple.

• The term to the left of `|’ (which should be read as such that) says that every tuple

that satisfies T>7 is in the answer.

• Modify this query to answer:

– Find sailors who are older than 18 or have a rating under 9, and are called ‘Joe’.

Find sailors rated > 7 who have reserved boat #103

• We have used as a shorthand for

• Note the use of to find a tuple in Reserves that `joins with’ the Sailors tuple under

consideration.

Find sailors rated > 7 who’ve reserved a red boat

• Observe how the parentheses control the scope of each quantifier’s binding.

• This may look cumbersome, but with a good user interface, it is very intuitive. (MS

Access, QBE)

Find sailors who’ve reserved all boats

• Find all sailors I such that for each 3-tuple either it is not a tuple in Boats or there is a

tuple in Reserves showing that sailor I has reserved it.

Find sailors who’ve reserved all boats (again!)

• Simpler notation, same query. (Much clearer!)

• To find sailors who’ve reserved all red boats:

Expressive Power of Algebra and Calculus:

• It is possible to write syntactically correct calculus queries that have an infinite number

of answers! Such queries are called unsafe.

– e.g.,

• It is known that every query that can be expressed in relational algebra can be

expressed as a safe query in DRC / TRC; the converse is also true.

• Relational Completeness: Query language (e.g., SQL) can express every query that is

expressible in relational algebra/calculus.

The Form of a Basic SQL Queries:

History

• IBM Sequel language developed as part of System R project at the IBM San Jose

Research Laboratory

• Renamed Structured Query Language (SQL)

• ANSI and ISO standard SQL:

– SQL-86

– SQL-89

– SQL-92

– SQL:1999 (language name became Y2K compliant!)

– SQL:2003

• Commercial systems offer most, if not all, SQL-92 features, plus varying feature sets

from later standards and special proprietary features.

– Not all examples here may work on your particular system.

• Data Definition Language

• The schema for each relation, including attribute types.

• Integrity constraints

• Authorization information for each relation.

• Non-standard SQL extensions also allow specification of

– The set of indices to be maintained for each relations.

– The physical storage structure of each relation on disk.

• Create Table Construct

• An SQL relation is defined using the create table command:

create table r (A1 D1, A2 D2, ..., An Dn,

(integrity-constraint1),

...,

(integrity-constraintk))

– r is the name of the relation

– each Ai is an attribute name in the schema of relation r

– Di is the data type of attribute Ai

Example:

create table branch

(branch_name char(15),

branch_city char(30),

assets integer)

• Domain Types in SQL

• char(n). Fixed length character string, with user-specified length n.

• varchar(n). Variable length character strings, with user-specified maximum length n.

• int. Integer (a finite subset of the integers that is machine-dependent).

• smallint. Small integer (a machine-dependent subset of the integer domain type).

• numeric(p,d). Fixed point number, with user-specified precision of p digits, with n

digits to the right of decimal point.

• real, double precision. Floating point and double-precision floating point numbers,

with machine-dependent precision.

• float(n). Floating point number, with user-specified precision of at least n digits.

• More are covered in Chapter 4.

• Integrity Constraints on Tables

• not null

• primary key (A1, ..., An)

• Basic Insertion and Deletion of Tuples

• Newly created table is empty

• Add a new tuple to account

insert into account values ('A-9732', 'Perryridge', 1200)

– Insertion fails if any integrity constraint is violated

• Delete all tuples from account

delete from account

Note: Will see later how to delete selected tuples

• Drop and Alter Table Constructs

• The drop table command deletes all information about the dropped relation from the

database.

• The alter table command is used to add attributes to an existing relation:

alter table r add A D

where A is the name of the attribute to be added to relation r and D is the domain of A.

– All tuples in the relation are assigned null as the value for the new attribute.

• The alter table command can also be used to drop attributes of a relation:

alter table r drop A

where A is the name of an attribute of relation r

– Dropping of attributes not supported by many databases

Basic Query Structure

• A typical SQL query has the form:
 select A1, A2, ..., An

 from r1, r2, ..., rm

 where P

– Ai represents an attribute

– Ri represents a relation

– P is a predicate.

• This query is equivalent to the relational algebra expression.

The result of an SQL query is a relation.

• The select Clause

• The select clause list the attributes desired in the result of a query

– corresponds to the projection operation of the relational algebra

• Example: find the names of all branches in the loan relation:

select branch_name

from loan

• In the relational algebra, the query would be:

Õbranch_name (loan)

• NOTE: SQL names are case insensitive (i.e., you may use upper- or lower-case letters.)

– E.g. Branch_Name ≡ BRANCH_NAME ≡ branch_name

– Some people use upper case wherever we use bold font.

• SQL allows duplicates in relations as well as in query results.

• To force the elimination of duplicates, insert the keyword distinct after select.

• Find the names of all branches in the loan relations, and remove duplicates

select distinct branch_name from loan

• The keyword all specifies that duplicates not be removed.

select all branch_name from loan

• The select Clause (Cont.)

• An asterisk in the select clause denotes “all attributes”

select * from loan

• The select clause can contain arithmetic expressions involving the operation, +, –, *,

and /, and operating on constants or attributes of tuples.

E.g.:

select loan_number, branch_name, amount * 100 from loan

• The where Clause

• The where clause specifies conditions that the result must satisfy

– Corresponds to the selection predicate of the relational algebra.

• To find all loan number for loans made at the Perryridge branch with loan amounts

greater than $1200.

select loan_number from loan where branch_name = 'Perryridge' and amount

> 1200

• Comparison results can be combined using the logical connectives and, or, and not.

• The from Clause

• The from clause lists the relations involved in the query

– Corresponds to the Cartesian product operation of the relational algebra.

• Find the Cartesian product borrower X loan

Select *from borrower, loan

• The Rename Operation

• SQL allows renaming relations and attributes using the as clause:

old-name as new-name

• E.g. Find the name, loan number and loan amount of all customers; rename the column

name loan_number as loan_id.

• Tuple Variables

• Tuple variables are defined in the from clause via the use of the as clause.

• Find the customer names and their loan numbers and amount for all customers having a

loan at some branch.

11.Example Basic Sql Queries:

• We will use these instances of the Sailors and Reserves relations in our examples.

• If the key for the Reserves relation contained only the attributes sid and bid, how would

the semantics differ?

Basic SQL Query

• relation-list A list of relation names (possibly with a range-variable after each name).

• target-list A list of attributes of relations in relation-list

• qualification Comparisons (Attr op const or Attr1 op Attr2, where op is one of

) combined using AND, OR and NOT.

• DISTINCT is an optional keyword indicating that the answer should not contain

duplicates. Default is that duplicates are not eliminated!

Conceptual Evaluation Strategy

• Semantics of an SQL query defined in terms of the following conceptual evaluation

strategy:

– Compute the cross-product of relation-list.

– Discard resulting tuples if they fail qualifications.

– Delete attributes that are not in target-list.

– If DISTINCT is specified, eliminate duplicate rows.

• This strategy is probably the least efficient way to compute a query! An optimizer will

find more efficient strategies to compute the same answers.

A Note on Range Variables

• Really needed only if the same relation appears twice in the FROM clause. The

previous query can also be written as:

• Find sailors who’ve reserved at least one boat

ould adding DISTINCT to this query make a difference?

• What is the effect of replacing S.sid by S.sname in the SELECT clause? Would adding

DISTINCT to this variant of the query make a difference?

Expressions and Strings

• Illustrates use of arithmetic expressions and string pattern matching: Find triples (of

ages of sailors and two fields defined by expressions) for sailors whose names begin and end with

B and contain at least three characters.

• AS and = are two ways to name fields in result.

• LIKE is used for string matching. `_’ stands for any one character and `%’ stands for 0

or more arbitrary characters.

String Operations

• SQL includes a string-matching operator for comparisons on character strings. The

operator “like” uses patterns that are described using two special characters:

– percent (%). The % character matches any substring.

– underscore (_). The _ character matches any character.

• Find the names of all customers whose street includes the substring “Main”.

select customer_name

from customer

where customer_street like '% Main%'

• Match the name “Main%” like 'Main\%' escape '\'

• SQL supports a variety of string operations such as

– concatenation (using “||”)

– converting from upper to lower case (and vice versa)

– finding string length, extracting substrings, etc.

Ordering the Display of Tuples

• List in alphabetic order the names of all customers having a loan in Perryridge branch

select distinct customer_name

from borrower, loan

where borrower loan_number = loan.loan_number and

branch_name = 'Perryridge'

order by customer_name

• We may specify desc for descending order or asc for ascending order, for each

attribute; ascending order is the default.

–Example: order by customer_name desc

Duplicates

• In relations with duplicates, SQL can define how many copies of tuples appear in the

result.

• Multiset versions of some of the relational algebra operators – given multiset relations

r1 and r2:

1. (r1): If there are c1 copies of tuple t1 in r1, and t1 satisfies selections ,, then there

are c1 copies of t1 in (r1).

2. A (r): For each copy of tuple t1 in r1, there is a copy of tuple A (t1) in A (r1) where A

(t1) denotes the projection of the single tuple t1.

3. r1 x r2 : If there are c1 copies of tuple t1 in r1 and c2 copies of tuple t2 in r2, there are c1

x c2 copies of the tuple t1. t2 in r1 x r2

• Example: Suppose multiset relations r1 (A, B) and r2 (C) are as follows:

r1 = {(1, a) (2,a)} r2 = {(2), (3), (3)}

• Then B(r1) would be {(a), (a)}, while B(r1) x r2 would

be {(a,2), (a,2), (a,3), (a,3), (a,3), (a,3)}

• SQL duplicate semantics:

select A1,, A2, ..., An

from r1, r2, ..., rm

where P

is equivalent to the multiset version of the expression:

Nested Queries:

• A very powerful feature of SQL: a WHERE clause can itself contain an SQL query!

(Actually, so can FROM and HAVING clauses.)

• To find sailors who’ve not reserved #103, use NOT IN.

• To understand semantics of nested queries, think of a nested loops evaluation: For each

Sailors tuple, check the qualification by computing the subquery.

Correlated Nested Queries:

Nested Queries with Correlation

• EXISTS is another set comparison operator, like IN.

• If UNIQUE is used, and * is replaced by R.bid, finds sailors with at most one

reservation for boat #103. (UNIQUE checks for duplicate tuples; * denotes all attributes. Why do

we have to replace * by R.bid?)

• Illustrates why, in general, subquery must be re-computed for each Sailors tuple.

Set comparison Operators:

Nested Sub queries

• SQL provides a mechanism for the nesting of subqueries.

• A subquery is a select-from-where expression that is nested within another query.

• A common use of subqueries is to perform tests for set membership, set comparisons,

and set cardinality.

• The set operations union, intersect, and except operate on relations and correspond to

the relational algebra operations

• Each of the above operations automatically eliminates duplicates; to retain all

duplicates use the corresponding multiset versions union all, intersect all and except all.

Suppose a tuple occurs m times in r and n times in s, then, it occurs:

 m + n times in r union all s

– min(m,n) times in r intersect all s

– max(0, m – n) times in r except all s

• Find all customers who have a loan, an account, or both:

More on Set-Comparison Operators

• We’ve already seen IN, EXISTS and UNIQUE. Can also use NOT IN, NOT EXISTS

and NOT UNIQUE.

• Also available: op ANY, op ALL, op IN

• Find sailors whose rating is greater than that of some sailor called Horatio:

Rewriting INTERSECT Queries Using IN

• Similarly, EXCEPT queries re-written using NOT IN.

• To find names (not sid’s) of Sailors who’ve reserved both red and green boats, just

replace S.sid by S.sname in SELECT clause. (What about INTERSECT query?)

Division in SQL

Aggregate Operators:

• These functions operate on the multiset of values of a column of a relation, and return a

value

avg: average value

min: minimum value

max: maximum value

sum: sum of values

count: number of values

Aggregate Operators examples

• Significant extension of relational algebra.

Motivation for Grouping

• So far, we’ve applied aggregate operators to all (qualifying) tuples. Sometimes, we

want to apply them to each of several groups of tuples.

• Consider: Find the age of the youngest sailor for each rating level.

– In general, we don’t know how many rating levels exist, and what the rating

values for these levels are!

– Suppose we know that rating values go from 1 to 10; we can write 10 queries

that look like this (!):

Queries With GROUP BY and HAVING

• The target-list contains (i) attribute names (ii) terms with aggregate operations (e.g.,

MIN (S.age)).

–

The attribute list (i) must be a subset of grouping-list. Intuitively, each answer

tuple corresponds to a group, and these attributes must have a single value per group. (A group is

a set of tuples that have the same value for all attributes in grouping-list.)

Conceptual Evaluation

• The cross-product of relation-list is computed, tuples that fail qualification are

discarded, `unnecessary’ fields are deleted, and the remaining tuples are partitioned into groups by

the value of attributes in grouping-list.

• The group-qualification is then applied to eliminate some groups. Expressions in

group-qualification must have a single value per group!

– In effect, an attribute in group-qualification that is not an argument of an

aggregate op also appears in grouping-list. (SQL does not exploit primary key semantics here!)

• One answer tuple is generated per qualifying group.

Find age of the youngest sailor with age 18, for each rating with at least 2 such sailors

• Find age of the youngest sailor with age 18, for each rating with at least 2 such sailors

and with every sailor under 60.

• Find age of the youngest sailor with age 18, for each rating with at least 2 sailors

between 18 and 60.

For each red boat, find the number of reservations for this boat Grouping over a join of

three relations.

• What do we get if we remove B.color=‘red’ from the WHERE clause and add a

HAVING clause with this condition?

• What if we drop Sailors and the condition involving S.sid?

• Find age of the youngest sailor with age > 18, for each rating with at least 2 sailors (of

any age)

• Shows HAVING clause can also contain a subquery.

• Compare this with the query where we considered only ratings with 2 sailors over 18!

• What if HAVING clause is replaced by:

– HAVING COUNT(*) >1

• Find those ratings for which the average age is the minimum over all ratings

• Aggregate operations cannot be nested! WRONG:

• Find the average account balance at the Perryridge branch.

Aggregate Functions – Group By

• Find the number of depositors for each branch.

Aggregate Functions – Having Clause

• Find the names of all branches where the average account balance is more than $1,200.

Null Values:

• Field values in a tuple are sometimes unknown (e.g., a rating has not been assigned) or

inapplicable (e.g., no spouse’s name).

– SQL provides a special value null for such situations.

• The presence of null complicates many issues. E.g.:

– Special operators needed to check if value is/is not null.

– Is rating>8 true or false when rating is equal to null? What about AND, OR

 and NOT connectives?

– We need a 3-valued logic (true, false and unknown).

– Meaning of constructs must be defined carefully. (e.g., WHERE clause

eliminates rows that don’t evaluate to true.)

– New operators (in particular, outer joins) possible/needed.

Comparision Using Null Values:

• It is possible for tuples to have a null value, denoted by null, for some of their attributes

• null signifies an unknown value or that a value does not exist.

• The predicate is null can be used to check for null values.

– Example: Find all loan number which appear in the loan relation with null

values for amount.

select loan_number

from loan

where amount is null

• The result of any arithmetic expression involving null is null

– Example: 5 + null returns null

• However, aggregate functions simply ignore nulls

– More on next slide

• Null Values and Three Valued Logic

• Any comparison with null returns unknown

– Example: 5 < null or null <> null or null = null

Logical Connectives:AND,OR,NOT

• Three-valued logic using the truth value unknown:

– OR: (unknown or true) = true,

(unknown or false) = unknown

(unknown or unknown) = unknown

– AND: (true and unknown) = unknown,

(false and unknown) = false,

(unknown and unknown) = unknown

– NOT: (not unknown) = unknown

– “P is unknown” evaluates to true if predicate P evaluates to unknown

• Result of where clause predicate is treated as false if it evaluates to unknown

• Null Values and Aggregates

• Total all loan amounts

select sum (amount)

from loan

– Above statement ignores null amounts

– Result is null if there is no non-null amount

• All aggregate operations except count(*) ignore tuples with null values on the

aggregated attributes.

Impact on SQL Constructs:

“In” Construct

“Some” Construct

“All” Construct

• Find the names of all branches that have greater assets than all branches located in

Brooklyn.

“Exists” Construct

• Find all customers who have an account at all branches located in Brooklyn.

• Absence of Duplicate Tuples

• The unique construct tests whether a subquery has any duplicate tuples in its result.

• Find all customers who have at most one account at the Perryridge branch.

select T.customer_name

from depositor as T

where unique (

select R.customer_name

from account, depositor as R

where T.customer_name = R.customer_name and

R.account_number = account.account_number and

account.branch_name = 'Perryridge')

Example Query

• Find all customers who have at least two accounts at the Perryridge branch.

Modification of the Database – Deletion

• Delete all account tuples at the Perryridge branch

delete from account

where branch_name = 'Perryridge'

• Delete all accounts at every branch located in the city ‘Needham’.

delete from account

where branch_name in (select branch_name

from branch

where branch_city = 'Needham')

• Example Query

• Delete the record of all accounts with balances below the average at the bank.

Modification of the Database – Insertion

• Add a new tuple to account

insert into account

values ('A-9732', 'Perryridge', 1200) or equivalently

insert into account (branch_name, balance, account_number)

values ('Perryridge', 1200, 'A-9732')

• Add a new tuple to account with balance set to null

insert into account values ('A-777','Perryridge', null)

Modification of the Database – Insertion

• Provide as a gift for all loan customers of the Perryridge branch, a $200 savings

account. Let the loan number serve as the account number for the new savings account

insert into account

select loan_number, branch_name, 200

from loan

where branch_name = 'Perryridge'

insert into depositor

select customer_name, loan_number

from loan, borrower

where branch_name = 'Perryridge'

and loan.account_number = borrower.account_number

• The select from where statement is evaluated fully before any of its results are inserted

into the relation

–Motivation: insert into table1 select * from table1

Modification of the Database – Updates

• Increase all accounts with balances over $10,000 by 6%, all other accounts receive 5%.

– Write two update statements:

update account

set balance = balance 1.06

where balance > 10000

update account

set balance = balance 1.05

where balance 10000

– The order is important

– Can be done better using the case statement (next slide)

Case Statement for Conditional Updates

• Same query as before: Increase all accounts with balances over $10,000 by 6%, all

other accounts receive 5%.

update account

set balance = case

when balance <= 10000 then balance *1.05

else balance * 1.06

end

Outer Joins:

Joined Relations**

• Join operations take two relations and return as a result another relation.

• These additional operations are typically used as subquery expressions in the from

clause

• Join condition – defines which tuples in the two relations match, and what attributes

are present in the result of the join.

• Join type – defines how tuples in each relation that do not match any tuple in the other

relation (based on the join condition) are treated.

• Joined Relations – Datasets for Examples

Relation loan

• Joined Relations – Examples

loan inner join borrower on loan.loan_number = borrower.loan_number

Joined Relations – Examples

loan natural inner join borrower

Joined Relations – Examples

• Natural join can get into trouble if two relations have an attribute with

same name that should not affect the join condition

– e.g. an attribute such as remarks may be present in many tables

• Solution:

– loan full outer join borrower using (loan_number)

• Derived Relations

• SQL allows a subquery expression to be used in the from clause

• Find the average account balance of those branches where the average account

balance is greater than $1200.

select branch_name, avg_balance

from (select branch_name, avg (balance)

from account

group by branch_name) as branch_avg (branch_name, avg_balance)

where avg_balance > 1200

Note that we do not need to use the having clause, since we compute the temporary

(view) relation branch_avg in the from clause, and the attributes of branch_avg can be used

directly in the where clause.

Complex Integrity Constraints in SQL:

• Integrity Constraints (Review)

• An IC describes conditions that every legal instance of a relation must satisfy.

– Inserts/deletes/updates that violate IC’s are disallowed.

– Can be used to ensure application semantics (e.g., sid is a key), or prevent

inconsistencies (e.g., sname has to be a string, age must be < 200)

• Types of IC’s: Domain constraints, primary key constraints, foreign key constraints,

general constraints.

– Domain constraints: Field values must be of right type. Always enforced.

General Constraints

• Useful when more general ICs than keys are involved.

• Can use queries to express constraint.

• Constraints can be named.

Triggers and Active Databases:

• Trigger: procedure that starts automatically if specified changes occur to the DBMS

• Three parts:

– Event (activates the trigger)

– Condition (tests whether the triggers should run)

– Action (what happens if the trigger runs)

• Triggers: Example (SQL:1999)

CREATE TRIGGER youngSailorUpdate

AFTER INSERT ON SAILORS

REFERENCING NEW TABLE NewSailors

FOR EACH STATEMENT

INSERT

INTO YoungSailors(sid, name, age, rating)

SELECT sid, name, age, rating

FROM NewSailors N

WHERE N.age <= 18

UNIT-III

 Introduction To Schema Refinement:

The Evils of Redundancy

Redundancy is at the root of several problems associated with relational schemas:

– redundant storage, insert/delete/update anomalies

Integrity constraints, in particular functional dependencies, can be used to identify

schemas with such problems and to suggest refinements.

Main refinement technique: decomposition (replacing ABCD with, say, AB and BCD,

or ACD and ABD).

Decomposition should be used judiciously:

– Is there reason to decompose a relation?

– What problems (if any) does the decomposition cause?

 Problems Caused by Redundancy:

• Storing the same information redundantly, that is, in more than one place within a

database, can lead to several problems:

• Redundant storage: Some information is stored repeatedly.

• Update anomalies: If one copy of such repeated data is updated, an inconsistency

• is created unless all copies are similarly updated.

• Insertion anomalies: It may not be possible to store some information unless

• some other information is stored as well.

• Deletion anomalies: It may not be possible to delete some information without

• losing some other information as well.

• Consider a relation obtained by translating a variant of the Hourly Emps entity set

Ex: Hourly Emps(ssn, name, lot, rating, hourly wages, hours worked)

• The key for Hourly Emps is ssn. In addition, suppose that the hourly wages attribute

• is determined by the rating attribute. That is, for a given rating value, there is only

• one permissible hourly wages value. This IC is an example of a functional dependency.

• It leads to possible redundancy in the relation Hourly Emps

Decompositions:

• Intuitively, redundancy arises when a relational schema forces an association between

attributes that is not natural.

• Functional dependencies (ICs) can be used to identify such situations and to suggest

revetments to the schema.

• The essential idea is that many problems arising from redundancy can be addressed by

replacing a relation with a collection of smaller relations.

• Each of the smaller relations contains a subset of the attributes of the original relation.

• We refer to this process as decomposition of the larger relation into the smaller relations

• We can deal with the redundancy in Hourly Emps by decomposing it into two relations:

• Hourly Emps2(ssn, name, lot, rating, hours worked)

• Wages(rating, hourly wages)

 ssn name lot rating hours worked

123-22-3666 Attishoo 48 8 40

231-31-5368 Smiley 22 8 30

131-24-3650 Smethurst 35 5 30

434-26-3751 Guldu 35 5 32

612-67-4134 Madayan 35 8 40

Problems Related to Decomposition:

• Unless we are careful, decomposing a relation schema can create more problems than it

solves.

• Two important questions must be asked repeatedly:

• 1. Do we need to decompose a relation?

• 2. What problems (if any) does a given decomposition cause?

• To help with the rst question, several normal forms have been proposed for relations.

• If a relation schema is in one of these normal forms, we know that certain kinds of

• problems cannot arise. Considering the n

Functional Dependencies (FDs):

• A functional dependency XY holds over relation R if, for every allowable instance r of

R:

 t1 r, t2 r, (t1) = (t2) implies (t1) = (t2)

– i.e., given two tuples in r, if the X values agree, then the Y values must also

agree. (X and Y are sets of attributes.)

• An FD is a statement about all allowable relations.

– Must be identified based on semantics of application.

– Given some allowable instance r1 of R, we can check if it violates some FD f,

but we cannot tell if f holds over R!

• K is a candidate key for R means that K R

– However, K R does not require K to be minimal!

Example: Constraints on Entity Set

Consider relation obtained from Hourly_Emps:

– Hourly_Emps (ssn, name, lot, rating, hrly_wages, hrs_worked)

• Notation: We will denote this relation schema by listing the attributes: SNLRWH

– This is really the set of attributes {S,N,L,R,W,H}.

– Sometimes, we will refer to all attributes of a relation by using the relation

name. (e.g., Hourly_Emps for SNLRWH)

• Some FDs on Hourly_Emps:

– ssn is the key: S SNLRWH

– rating determines hrly_wages: R W

Constraints on a Relationship Set:

• Suppose that we have entity sets Parts, Suppliers, and Departments, as well as a

relationship set Contracts that involves all of them. We refer to the schema for

Contracts as CQPSD. A contract with contract id

• C species that a supplier S will supply some quantity Q of a part P to a department D.

• We might have a policy that a department purchases at most one part from any given

supplier.

• Thus, if there are several contracts between the same supplier and department,

• we know that the same part must be involved in all of them. This constraint is an FD,

DS ! P.

Reasoning about FDs

• Given some FDs, we can usually infer additional FDs:

– ssn did, did lot implies ssn lot

• An FD f is implied by a set of FDs F if f holds whenever all FDs in F hold.

– = closure of F is the set of all FDs that are implied by F.

• Armstrong’s Axioms (X, Y, Z are sets of attributes):

– Reflexivity: If X Y, then Y X

– Augmentation: If X Y, then XZ YZ for any Z

– Transitivity: If X Y and Y Z, then X Z

• These are sound and complete inference rules for FDs!

• Couple of additional rules (that follow from AA):

– Union: If X Y and X Z, then X YZ

– Decomposition: If X YZ, then X Y and X Z

• Example: Contracts(cid,sid,jid,did,pid,qty,value), and:

 C is the key: C CSJDPQV

– Project purchases each part using single contract:

– JP C

– Dept purchases at most one part from a supplier: S

– D P

• JP C, C CSJDPQV imply JP CSJDPQV

• SD P implies SDJ JP

• SDJ JP, JP CSJDPQV imply SDJCSJDPQV

• Computing the closure of a set of FDs can be expensive. (Size of closure is exponential

in # attrs!)

• Typically, we just want to check if a given FD X Y is in the closure of a set of FDs F.

 An efficient check:

– Compute attribute closure of X (denoted) wrt F:

• Set of all attributes A such that X A is in

• There is a linear time algorithm to compute this.

– Check if Y is in

• Does F = {A B, B C, C D E } imply A E?

– i.e, is AE in the closure ? Equivalently, is E in ?

Closure of a Set of FDs

• The set of all FDs implied by a given set F of FDs is called the closure of F and is

denoted as F+.

• An important question is how we can infer, or compute, the closure of a given set F of FD,S

• The following three rules, called Armstrong's Axioms, can be applied repeatedly to

infer all FDs implied by a set F of FDs.

• We use X, Y, and Z to denote sets of attributes over a relation schema R:

• Reflexivity: If X Y, then X !Y.

• Augmentation: If X ! Y, then XZ ! YZ for any Z.

• Transitivity: If X ! Y and Y ! Z, then X ! Z.

• Armstrong's Axioms are sound in that they generate only FDs in F+ when applied to a

set F of FDs.

• They are complete in that repeated application of these rules will generate all FDs in

the closure F+.

• It is convenient to use some additional rules while reasoning about F+:

• Union: If X ! Y and X ! Z, then X !YZ.

• Decomposition: If X ! YZ, then X !Y and X ! Z.

• These additional rules are not essential; their soundness can be proved using

Armstrong's Axioms.

Attribute Closure

• If we just want to check whether a given dependency, say, X → Y, is in the closure of a

set F of FDs,

• we can do so eciently without computing F+. We rst compute the attribute closure X+

with respect to F,

• which is the set of attributes A such that X → A can be inferred using the Armstrong

Axioms.

• The algorithm for computing the attribute closure of a set X of attributes is

• closure = X;

repeat until there is no change: {

if there is an FD U → V in F such that U subset of closure,

then set closure = closure union of V}

Normal Forms:

• The normal forms based on FDs are rst normal form (1NF), second normal form (2NF),

third normal form (3NF), and Boyce-Codd normal form (BCNF).

• These forms have increasingly restrictive requirements: Every relation in BCNF is

also in 3NF,

• every relation in 3NF is also in 2NF, and every relation in 2NF is in 1NF.

• A relation

• is in first normal form if every field contains only atomic values, that is, not lists or

sets.

• This requirement is implicit in our defition of the relational model.

• Although some of the newer database systems are relaxing this requirement

• 2NF is mainly of historical interest.

• 3NF and BCNF are important from a database design standpoint.

Normal Forms

• Returning to the issue of schema refinement, the first question to ask is whether any

refinement is needed!

• If a relation is in a certain normal form (BCNF, 3NF etc.), it is known that certain kinds

of problems are avoided/minimized. This can be used to help us decide whether

decomposing the relation will help

• Role of FDs in detecting redundancy:

– Consider a relation R with 3 attributes, ABC.

• No FDs hold: There is no redundancy here.

• Given A B: Several tuples could have the same A value, and if so,

they’ll all have the same B value!

First Normal Form:

• 1NF (First Normal Form)

• a relation R is in 1NF if and only if it has only single-valued attributes (atomic

 values)

• EMP_PROJ (SSN, PNO, HOURS, ENAME, PNAME, PLOCATION)

 PLOCATION is not in 1NF (multi-valued attrib.)

• solution: decompose the relation

 EMP_PROJ2 (SSN, PNO, HOURS, ENAME, PNAME)

 LOC (PNO, PLOCATION)

Second Normal Form:

• 2NF (Second Normal Form)

• a relation R in 2NF if and only if it is in 1NF and every nonkey column depends

on a key not a subset of a key

• all nonprime attributes of R must be fully functionally dependent on a whole

key(s) of the relation, not a part of the key

• no violation: single-attribute key or no nonprime attribute

• 2NF (Second Normal Form)

• violation: part of a key nonkey
 EMP_PROJ2 (SSN, PNO, HOURS, ENAME, PNAME)

 SSN ENAME

 PNO PNAME

• solution: decompose the relation

 EMP_PROJ3 (SSN, PNO, HOURS)

 EMP (SSN, ENAME)

 PROJ (PNO, PNAME)

Third Normal Form:

• 3NF (Third Normal Form)

• a relation R in 3NF if and only if it is in 2NF and every nonkey column does not

depend on another nonkey column

• all nonprime attributes of R must be non-transitively functionally dependent on

a key of the relation

• violation: nonkey nonkey

• 3NF (Third Normal Form)

• SUPPLIER (SNAME, STREET, CITY, STATE, TAX)

SNAME STREET, CITY, STATE

STATE TAX (nonkey nonkey)

SNAME STATE TAX (transitive FD)

• solution: decompose the relation

SUPPLIER2 (SNAME, STREET, CITY, STATE)

TAXINFO (STATE, TAX)

• Boyce-Codd Normal Form (BCNF)

• Reln R with FDs F is in BCNF if, for all X A in

– A X (called a trivial FD), or

– X contains a key for R.

• In other words, R is in BCNF if the only non-trivial FDs that hold over R are key

constraints.

– No dependency in R that can be predicted using FDs alone.

– If we are shown two tuples that agree upon the X value, we

 cannot infer the A value in one tuple from the A value in the other.

– If example relation is in BCNF, the 2 tuples must be

 identical (since X is a key).

Third Normal Form (3NF)

• Reln R with FDs F is in 3NF if, for all XA in

– AX (called a trivial FD), or

– X contains a key for R, or

– A is part of some key for R.

• Minimality of a key is crucial in third condition above!

• If R is in BCNF, obviously in 3NF.

BCNF:

• If R is in 3NF, some redundancy is possible. It is a compromise, used when BCNF not

achievable (e.g., no ``good’’ decomp, or performance considerations).

– Lossless-join, dependency-preserving decomposition of R into a collection of

3NF relations always possible.

Properties of Decompositions :

• Suppose that relation R contains attributes A1 ... An. A decomposition of R consists of

replacing R by two or more relations such that:

– Each new relation scheme contains a subset of the attributes of R (and no

attributes that do not appear in R), and

– Every attribute of R appears as an attribute of one of the new relations.

• Intuitively, decomposing R means we will store instances of the relation schemes

produced by the decomposition, instead of instances of R.

• E.g., Can decompose SNLRWH into SNLRH and RW.

Example Decomposition

• Decompositions should be used only when needed.

– SNLRWH has FDs SSNLRWH and RW

– Second FD causes violation of 3NF; W values repeatedly associated with R

 values. Easiest way to fix this is to create a relation RW to store these

 associations , and to remove W from the main schema:

 i.e., we decompose SNLRWH into SNLRH and RW

 • The information to be stored consists of SNLRWH tuples. If we just

store the projections of these tuples onto SNLRH and RW, are there any

potential problems that we should be aware of?

Problems with Decompositions

• There are three potential problems to consider:

– Some queries become more expensive.

• e.g., How much did sailor Joe earn? (salary = W*H)

– Given instances of the decomposed relations, we may not be able to reconstruct

the corresponding instance of the original relation!

• Fortunately, not in the SNLRWH example.

– Checking some dependencies may require joining the instances of the

decomposed relations.

• Fortunately, not in the SNLRWH example.

• Tradeoff: Must consider these issues vs. redundancy.

Lossless Join Decompositions:

• Decomposition of R into X and Y is lossless-join w.r.t. a set of FDs F if, for every

instance r that satisfies F:

– (r) (r) = r

• It is always true that r (r) (r)

– In general, the other direction does not hold! If it does, the decomposition is

lossless-join.

• Definition extended to decomposition into 3 or more relations in a straightforward way.

• It is essential that all decompositions used to deal with redundancy be lossless! (Avoids

Problem (2).)

More on Lossless Join

• Dependency Preserving Decomposition

• Consider CSJDPQV, C is key, JP C and SDP.

– BCNF decomposition: CSJDQV and SDP

– Problem: Checking JP C requires a join!

 Dependency preserving decomposition (Intuitive):

– If R is decomposed into X, Y and Z, and we enforce the FDs that hold on X, on

 Y and on Z, then all FDs that were given to hold on R must also hold. (Avoids

 Problem (3).)

• Projection of set of FDs F: If R is decomposed into X, ... projection of F onto X

enoted FX) is the set of FDs U V in F
+
 (closure of F) such that U, V are in X.

• Decomposition of R into X and Y is dependency preserving

if (FX union FY)
+
 = F

+

– i.e., if we consider only dependencies in the closure F
+

 that can be checked in X

 without considering Y, and in Y without considering X, these imply all

 dependencies in F
+
.

• Important to consider F
+

, not F, in this definition:

– ABC, A B, B C, C A, decomposed into AB and BC.

– Is this dependency preserving? Is C A preserved?????

• Dependency preserving does not imply lossless join:

– ABC, A B, decomposed into AB and BC.

• And vice-versa! (Example?)

Decomposition into BCNF

• Consider relation R with FDs F. If X Y violates BCNF, decompose R into R - Y and

XY.

– Repeated application of this idea will give us a collection of relations that are in

BCNF; lossless join decomposition, and guaranteed to terminate.

– e.g., CSJDPQV, key C, JP C, SD P, J S

– To deal with SD P, decompose into SDP, CSJDQV.

– To deal with J S, decompose CSJDQV into JS and CJDQV

• In general, several dependencies may cause violation of BCNF. The order in which we

``deal with’’ them could lead to very different sets of relations!

BCNF and Dependency Preservation

• In general, there may not be a dependency preserving decomposition into BCNF.

– e.g., CSZ, CS Z, Z C

– Can’t decompose while preserving 1st FD; not in BCNF.

> Similarly, decomposition of CSJDQV into SDP, JS and CJDQV is not dependency

preserving (w.r.t. the FDs JP C, SD P and J S).

– However, it is a lossless join decomposition.

– In this case, adding JPC to the collection of relations gives us a dependency

preserving decomposition.

• JPC tuples stored only for checking FD! (Redundancy!)

Decomposition into 3NF

• Obviously, the algorithm for lossless join decomp into BCNF can be used to obtain a

lossless join decomp into 3NF (typically, can stop earlier).

• To ensure dependency preservation, one idea:

– If X Y is not preserved, add relation XY.

– Problem is that XY may violate 3NF! e.g., consider the addition of CJP to

`preserve’ JP C. What if we also have J C ?

• Refinement: Instead of the given set of FDs F, use a minimal cover for F.

Schema Refinement in Data base Design:

Constraints on an Entity Set

• Consider the Hourly Emps relation again. The constraint that attribute ssn is a key can

be expressed as an FD:

• { ssn }-> { ssn, name, lot, rating, hourly wages, hours worked}

• For brevity, we will write this FD as S -> SNLRWH, using a single letter to denote each

attribute

• In addition, the constraint that the hourly wages attribute is determined by the rating

attribute is an

FD: R -> W.

Constraints on a Relationship Set

• The previous example illustrated how FDs can help to rene the subjective decisions

made during ER design,

• but one could argue that the best possible ER diagram would have led to the same nal

set of relations.

• Our next example shows how FD information can lead to a set of relations that

eliminates some redundancy problems and is unlikely to be arrived at solely through ER

design.

Identifying Attributes of Entities

• in particular, it shows that attributes can easily be associated with the `wrong' entity set

during ER design.

• The ER diagram shows a relationship set called Works In that is similar to the

Works In relationship set

• Using the key constraint, we can translate this ER diagram into two relations:

• Workers(ssn, name, lot, did, since)

Identifying Entity Sets

• Let Reserves contain attributes S, B, and D as before, indicating that sailor S has a

reservation for boat B on day D.

• In addition, let there be an attribute C denoting the credit card to which the reservation

is charged.

• Suppose that every sailor uses a unique credit card for reservations. This constraint is

expressed by the FD

S -> C. This constraint indicates that in relation Reserves, we store the credit card number

for a sailor as often as we have reservations for that

• sailor, and we have redundancy and potential update anomalies.

Multivalued Dependencies:

• Suppose that we have a relation with attributes course, teacher, and book, which we

denote as CTB.

• The meaning of a tuple is that teacher T can teach course C, and book B is a

recommended text for the course.

• There are no FDs; the key is CTB. However, the recommended texts for a course are

independent of the instructor.

There are three points to note here:

• The relation schema CTB is in BCNF; thus we would not consider decomposing it

further if we looked only at the FDs that hold over CTB.

• There is redundancy. The fact that Green can teach Physics101 is recorded once per

recommended text for the course. Similarly, the fact that Optics is a text for Physics101

is recorded once per potential teacher.

• The redundancy can be eliminated by decomposing CTB into CT and CB.

• Let R be a relation schema and let X and Y be subsets of the attributes of R. Intuitively,

• the multivalued dependency X !! Y is said to hold over R if, in every legal

• The redundancy in this example is due to the constraint that the texts for a course are

independent of the instructors, which cannot be epressed in terms of FDs.

• This constraint is an example of a multivalued dependency, or MVD. Ideally, we

should model this situation using two binary relationship sets, Instructors with attributes

CT and Text with attributes CB.

• Because these are two essentially independent relationships, modeling them with a

single ternary relationship set with attributes CTB is inappropriate.

• Three of the additional rules involve only MVDs:

MVD Complementation: If X →→Y, then X →→ R − XY

MVD Augmentation: If X →→ Y and W > Z, then

WX →→ YZ.

• MVD Transitivity: If X →→ Y and Y →→ Z, then

X →→ (Z − Y).

Fourth Normal Form:

• R is said to be in fourth normal form (4NF) if for every MVD X →→Y that holds over

R, one of the following statements is true:

• Y subset of X or XY = R, or

• X is a superkey.

Join Dependencies:

• A join dependency is a further generalization of MVDs. A join dependency (JD) ∞{

R1,….. Rn } is said to hold over a relation R if R1,…. Rn is a lossless-join

decomposition of R.

• An MVD X ->-> Y over a relation R can be expressed as the join dependency ∞ {

XY,X(R−Y)}

• As an example, in the CTB relation, the MVD C ->->T can be expressed as the join

dependency ∞{ CT, CB}

• Unlike FDs and MVDs, there is no set of sound and complete inference rules for JDs.

Fifth Normal Form:

• A relation schema R is said to be in fth normal form (5NF) if for every JD ∞{ R1,….

Rn } that holds over R, one of the following statements is true:

• Ri = R for some i, or

• The JD is implied by the set of those FDs over R in which the left side is a key for R.

• The following result, also due to Date and Fagin, identies conditions|again, detected

using only FD information|under which we can safely ignore JD information.

• If a relation schema is in 3NF and each of its keys consists of a single attribute,it is also

in 5NF.

Inclusion Dependencies:

2. MVDs and JDs can be used to guide database design, as we have seen, although they

are less common than FDs and harder to recognize and reason about.

3. In contrast, inclusion dependencies are very intuitive and quite common. However, they

typically have little influence on database design

4. The main point to bear in mind is that we should not split groups of attributes that

participate in an inclusion dependency.

5. Most inclusion dependencies in practice are key-based, that is, involve only keys.

UNIT-IV
Transaction Concept:

1. A transaction is a unit of program execution that accesses and possibly updates

various data items.

2. E.g. transaction to transfer $50 from account A to account B:

1. read(A)

2. A := A – 50

3. write(A)

4. read(B)

5. B := B + 50

6. write(B)

4. Two main issues to deal with:

– Failures of various kinds, such as hardware failures and system crashes

– Concurrent execution of multiple transactions

Example of Fund Transfer

• Transaction to transfer $50 from account A to account B:

• read(A)

• A := A – 50

• write(A)

• read(B)

• B := B + 50

• write(B)

Atomicity requirement

– if the transaction fails after step 3 and before step 6, money will be “lost”

leading to an inconsistent database state

• Failure could be due to software or hardware

– the system should ensure that updates of a partially executed transaction are not

reflected in the database

Durability requirement — once the user has been notified that the transaction has completed

(i.e., the transfer of the $50 has taken place), the updates to the database by the transaction must

persist even if there are software or hardware failures.

Example of Fund Transfer (Cont.)

• Transaction to transfer $50 from account A to account B:

• read(A)

• A := A – 50

• write(A)

• read(B)

• B := B + 50

• write(B)

Consistency requirement in above example:

– the sum of A and B is unchanged by the execution of the transaction

• In general, consistency requirements include

• Explicitly specified integrity constraints such as primary keys and

foreign keys

• Implicit integrity constraints

– e.g. sum of balances of all accounts, minus sum of loan amounts

must equal value of cash-in-hand

– A transaction must see a consistent database.

– During transaction execution the database may be temporarily inconsistent.

– When the transaction completes successfully the database must be consistent

• Erroneous transaction logic can lead to inconsistency

Example of Fund Transfer (Cont.)

Isolation requirement — if between steps 3 and 6, another transaction T2 is allowed to access

the partially updated database, it will see an inconsistent database (the sum A + B will be less

than it should be).

T1 T2

• read(A)

• A := A – 50

• write(A)

read(A), read(B), print(A+B)

• read(B)

• B := B + 50

• write(B

• Isolation can be ensured trivially by running transactions serially

– that is, one after the other.

• However, executing multiple transactions concurrently has significant benefits, as we

will see later.

ACID Properties

• Atomicity. Either all operations of the transaction are properly reflected in the database

or none are.

• Consistency. Execution of a transaction in isolation preserves the consistency of the

database.

• Isolation. Although multiple transactions may execute concurrently, each transaction

must be unaware of other concurrently executing transactions. Intermediate transaction

results must be hidden from other concurrently executed transactions.

– That is, for every pair of transactions Ti and Tj, it appears to Ti that either Tj,

finished execution before Ti started, or Tj started execution after Ti finished.

• Durability. After a transaction completes successfully, the changes it has made to the

database persist, even if there are system failures.

Transaction State:

• Active – the initial state; the transaction stays in this state while it is executing

• Partially committed – after the final statement has been executed.

• Failed -- after the discovery that normal execution can no longer proceed.

• Aborted – after the transaction has been rolled back and the database restored to its

state prior to the start of the transaction. Two options after it has been aborted:

– restart the transaction

• can be done only if no internal logical error

– kill the transaction

• Committed – after successful completion.

Implementation of Atomicity and Durability:

• The recovery-management component of a database system implements the support

for atomicity and durability.

• E.g. the shadow-database scheme:

– all updates are made on a shadow copy of the database
• db_pointer is made to point to the updated shadow copy after

– the transaction reaches partial commit and

– all updated pages have been flushed to disk.

• db_pointer always points to the current consistent copy of the database.

– In case transaction fails, old consistent copy pointed to by db_pointer can be

used, and the shadow copy can be deleted.

• The shadow-database scheme:

– Assumes that only one transaction is active at a time.

– Assumes disks do not fail

– Useful for text editors, but

• extremely inefficient for large databases (why?)

– Variant called shadow paging reduces copying of data, but is still

not practical for large databases

– Does not handle concurrent transactions

• Will study better schemes in Chapter 17.

4.Concurrent Executions:

• Multiple transactions are allowed to run concurrently in the system. Advantages are:

– increased processor and disk utilization, leading to better transaction throughput

• E.g. one transaction can be using the CPU while another is reading from

or writing to the disk

– reduced average response time for transactions: short transactions need not

wait behind long ones.

• Concurrency control schemes – mechanisms to achieve isolation

– that is, to control the interaction among the concurrent transactions in order to

prevent them from destroying the consistency of the database

• Will study in Chapter 16, after studying notion of correctness of

concurrent executions.

Schedules

• Schedule – a sequences of instructions that specify the chronological order in which

instructions of concurrent transactions are executed

– a schedule for a set of transactions must consist of all instructions of those

transactions

– must preserve the order in which the instructions appear in each individual

transaction.

• A transaction that successfully completes its execution will have a commit instructions

as the last statement

– by default transaction assumed to execute commit instruction as its last step

• A transaction that fails to successfully complete its execution will have an abort

instruction as the last statement

Schedule 1

• Let T1 transfer $50 from A to B, and T2 transfer 10% of the balance from A to B.

• A serial schedule in which T1 is followed by T2 :

Schedule 2

Schedule 3

• Let T1 and T2 be the transactions defined previously. The following schedule is not a

serial schedule, but it is equivalent to Schedule 1.

Schedule 4

• The following concurrent schedule does not preserve the value of (A + B).

Serializability:

• Basic Assumption – Each transaction preserves database consistency.

• Thus serial execution of a set of transactions preserves database consistency.

• A (possibly concurrent) schedule is serializable if it is equivalent to a serial schedule.

Different forms of schedule equivalence give rise to the notions of:

• conflict serializability

• view serializability

Simplified view of transactions

– We ignore operations other than read and write instructions

– We assume that transactions may perform arbitrary computations on data in

local buffers in between reads and writes.

– Our simplified schedules consist of only read and write instructions.

Conflicting Instructions

• Instructions li and lj of transactions Ti and Tj respectively, conflict if and only if there exists

some item Q accessed by both li and lj, and at least one of these instructions wrote

 Q.

 1. li = read(Q), lj = read(Q). li and lj don’t conflict.

2. li = read(Q), lj = write(Q). They conflict.

3. li = write(Q), lj = read(Q). They conflict

4. li = write(Q), lj = write(Q). They conflict

• Intuitively, a conflict between li and lj forces a (logical) temporal order between them.

– If li and lj are consecutive in a schedule and they do not conflict, their results

would remain the same even if they had been interchanged in the schedule.

Conflict Serializability

• If a schedule S can be transformed into a schedule S´ by a series of swaps of non-

conflicting instructions, we say that S and S´ are conflict equivalent.

• We say that a schedule S is conflict serializable if it is conflict equivalent to a serial

schedule

• Schedule 3 can be transformed into Schedule 6, a serial schedule where T2 follows T1,

by series of swaps of non-conflicting instructions.

– Therefore Schedule 3 is conflict serializable.

• Example of a schedule that is not conflict serializable:

• We are unable to swap instructions in the above schedule to obtain either the serial

schedule < T3, T4 >, or the serial schedule < T4, T3 >.

• View Serializability

• Let S and S´ be two schedules with the same set of transactions. S and S´ are view

equivalent if the following three conditions are met, for each data item Q,

– If in schedule S, transaction Ti reads the initial value of Q, then in schedule S’

also transaction Ti must read the initial value of Q.

– If in schedule S transaction Ti executes read(Q), and that value was produced by

transaction Tj (if any), then in schedule S’ also transaction Ti must read the

value of Q that was produced by the same write(Q) operation of transaction Tj .

– The transaction (if any) that performs the final write(Q) operation in schedule S

must also perform the final write(Q) operation in schedule S’.

As can be seen, view equivalence is also based purely on reads and writes alone.

• A schedule S is

view serializable if it is view equivalent to a serial schedule.

• Every conflict serializable schedule is also view serializable.

• Below is a schedule which is view-serializable but not conflict serializable.

• What serial schedule is above equivalent to?

• Every view serializable schedule that is not conflict serializable has blind writes.

• Other Notions of Serializability

• The schedule below produces same outcome as the serial schedule < T1, T5 >, yet is not

conflict equivalent or view equivalent to it.

Determining such equivalence requires analysis of operations other than read and write.

Recoverability:

• Recoverable schedule — if a transaction Tj reads a data item previously written by a

transaction Ti , then the commit operation of Ti appears before the commit operation of

Tj.

• The following schedule (Schedule 11) is not recoverable if T9 commits immediately

after the read

•

• If T8 should abort, T9 would have read (and possibly shown to the user) an inconsistent

database state. Hence, database must ensure that schedules are recoverable.

Cascading Rollbacks

• Cascading rollback – a single transaction failure leads to a series of transaction

rollbacks. Consider the following schedule where none of the transactions has yet

committed (so the schedule is recoverable)

If T10 fails, T11 and T12 must also be rolled back.

• Can lead to the undoing of a significant amount of work

• Cascadeless schedules — cascading rollbacks cannot occur; for each pair of

transactions Ti and Tj such that Tj reads a data item previously written by Ti, the commit operation

of Ti appears before the read operation of Tj.

• Every cascadeless schedule is also recoverable

• It is desirable to restrict the schedules to those that are cascadeless

Concurrency Control

• A database must provide a mechanism that will ensure that all possible schedules are

– either conflict or view serializable, and

– are recoverable and preferably cascadeless

• A policy in which only one transaction can execute at a time generates serial schedules,

but provides a poor degree of concurrency

– Are serial schedules recoverable/cascadeless?

• Testing a schedule for serializability after it has executed is a little too late!

• Goal – to develop concurrency control protocols that will assure serializability.

Implementation of Isolation:

• Schedules must be conflict or view serializable, and recoverable, for the sake of

database consistency, and preferably cascadeless.

• A policy in which only one transaction can execute at a time generates serial schedules,

but provides a poor degree of concurrency.

• Concurrency-control schemes tradeoff between the amount of concurrency they allow

and the amount of overhead that they incur.

• Some schemes allow only conflict-serializable schedules to be generated, while others

allow view-serializable schedules that are not conflict-serializable.

Testing for Serializability:

• Consider some schedule of a set of transactions T1, T2, ..., Tn

• Precedence graph — a direct graph where the vertices are the transactions (names).

• We draw an arc from Ti to Tj if the two transaction conflict, and Ti accessed the data

item on which the conflict arose earlier.

• We may label the arc by the item that was accessed.

Test for Conflict Serializability

• A schedule is conflict serializable if and only if its precedence graph is acyclic.

• Cycle-detection algorithms exist which take order n
2
 time, where n is the number of

vertices in the graph.

– (Better algorithms take order n + e where e is the number of edges.)

• If precedence graph is acyclic, the serializability order can be obtained by a topological

sorting of the graph.

– This is a linear order consistent with the partial order of the graph.

– For example, a serializability order for Schedule A would be

T5 T1 T3 T2 T4

• Are there others?

Test for View Serializability

> The precedence graph test for conflict serializability cannot be used directly to test for

 view serializability.
– Extension to test for view serializability has cost exponential in the size of the

precedence graph.

• The problem of checking if a schedule is view serializable falls in the class of NP-

complete problems.

– Thus existence of an efficient algorithm is extremely unlikely.

• However practical algorithms that just check some sufficient conditions for view

serializability can still be used.

Concurrency Control:

Concurrency Control vs. Serializability Tests

• Concurrency-control protocols allow concurrent schedules, but ensure that the

schedules are conflict/view serializable, and are recoverable and cascadeless .

• Concurrency control protocols generally do not examine the precedence graph as it is

being created

– Instead a protocol imposes a discipline that avoids nonseralizable schedules.

– We study such protocols in Chapter 16.

• Different concurrency control protocols provide different tradeoffs between the

amount of concurrency they allow and the amount of overhead that they incur.

• Tests for serializability help us understand why a concurrency control protocol is

correct.

Weak Levels of Consistency

• Some applications are willing to live with weak levels of consistency, allowing

schedules that are not serializable

– E.g. a read-only transaction that wants to get an approximate total balance of all

– E.g. database statistics computed for query optimization can be approximate

(why?)

– Such transactions need not be serializable with respect to other transactions

• Tradeoff accuracy for performance

• Levels of Consistency in SQL-92

Serializable — default

• Repeatable read — only committed records to be read, repeated reads of same record

must return same value. However, a transaction may not be serializable – it may find

some records inserted by a transaction but not find others.

• Read committed — only committed records can be read, but successive reads of record

may return different (but committed) values.

• Read uncommitted — even uncommitted records may be read.

• Transaction Definition in SQL

• Data manipulation language must include a construct for specifying the set of

actions that comprise a transaction.

• In SQL, a transaction begins implicitly.

• A transaction in SQL ends by:

– Commit work commits current transaction and begins a new one.

– Rollback work causes current transaction to abort.

• In almost all database systems, by default, every SQL statement also commits implicitly

if it executes successfully

– Implicit commit can be turned off by a database directive

• E.g. in JDBC, connection.setAutoCommit(false);

Lock-Based Protocols:

• A lock is a mechanism to control concurrent access to a data item

• Data items can be locked in two modes :

1. exclusive (X) mode. Data item can be both read as well as

written. X-lock is requested using lock-X instruction.

2. shared (S) mode. Data item can only be read. S-lock is

requested using lock-S instruction.

• Lock requests are made to concurrency-control manager. Transaction can proceed only

after request is granted.

• Lock-compatibility matrix

• A transaction may be granted a lock on an item if the requested lock is compatible with

locks already held on the item by other transactions

• Any number of transactions can hold shared locks on an item,

– but if any transaction holds an exclusive on the item no other transaction may

hold any lock on the item.

• If a lock cannot be granted, the requesting transaction is made to wait till all

incompatible locks held by other transactions have been released. The lock is then

granted.

• Example of a transaction performing locking:

T2: lock-S(A);

read (A);

unlock(A);

lock-S(B);

read (B);

unlock(B);

display(A+B)

• Locking as above is not sufficient to guarantee serializability — if A and B get updated

in-between the read of A and B, the displayed sum would be wrong.

• A locking protocol is a set of rules followed by all transactions while requesting and

releasing locks. Locking protocols restrict the set of possible schedules.

• Pitfalls of Lock-Based Protocols

• Consider the partial schedule

• Neither T3 nor T4 can make progress — executing lock-S(B) causes T4 to wait for T3 to

release its lock on B, while executing lock-X(A) causes T3 to wait for T4 to release its

lock on A.

• Such a situation is called a deadlock.

– To handle a deadlock one of T3 or T4 must be rolled back

and its locks released.

• The potential for deadlock exists in most locking protocols. Deadlocks are a necessary

evil.

• Starvation is also possible if concurrency control manager is badly designed. For

example:

– A transaction may be waiting for an X-lock on an item, while a sequence of

 other transactions request and are granted an S-lock on the same item.

– The same transaction is repeatedly rolled back due to deadlocks.

• Concurrency control manager can be designed to prevent starvation.

• The Two-Phase Locking Protocol

• This is a protocol which ensures conflict-serializable schedules.

• Phase 1: Growing Phase

– transaction may obtain locks

– transaction may not release locks

• Phase 2: Shrinking Phase

– transaction may release locks

– transaction may not obtain locks

• The protocol assures serializability. It can be proved that the transactions can be

serialized in the order of their lock points (i.e. the point where a transaction acquired its

final lock).

• Two-phase locking does not ensure freedom from deadlocks

• Cascading roll-back is possible under two-phase locking. To avoid this, follow a

modified protocol called strict two-phase locking. Here a transaction must hold all its

exclusive locks till it commits/aborts.

• Rigorous two-phase locking is even stricter: here all locks are held till commit/abort. In

this protocol transactions can be serialized in the order in which they commit.

• The Two-Phase Locking Protocol (Cont.)

• There can be conflict serializable schedules that cannot be obtained if two-phase

locking is used.

• However, in the absence of extra information (e.g., ordering of access to data), two-

phase locking is needed for conflict serializability in the following sense:

Given a transaction Ti that does not follow two-phase locking, we can find a transaction

Tj that uses two-phase locking, and a schedule for Ti and Tj that is not conflict

serializable.

• Lock Conversions

• Two-phase locking with lock conversions:

– First Phase:

– can acquire a lock-S on item

– can acquire a lock-X on item

– can convert a lock-S to a lock-X (upgrade)

– Second Phase:

– can release a lock-S

– can release a lock-X

– can convert a lock-X to a lock-S (downgrade)

• This protocol assures serializability. But still relies on the programmer to insert the

various locking instructions.

Automatic Acquisition of Locks

6. A transaction Ti issues the standard read/write instruction, without explicit locking calls.

7. The operation read(D) is processed as:

if Ti has a lock on D

then

read(D)

else begin

if necessary wait until no other

transaction has a lock-X on D

grant Ti a lock-S on D;

read(D)

end

ii write(D) is processed as:

if Ti has a lock-X on D

then

write(D)

else begin

if necessary wait until no other trans. has any lock on D,

if Ti has a lock-S on D

then

upgrade lock on D to lock-X

else

grant Ti a lock-X on D

write(D)

end;

xi All locks are released after commit or abort

xii Implementation of Locking

xiii A lock manager can be implemented as a separate process to which transactions send

lock and unlock requests

xiv The lock manager replies to a lock request by sending a lock grant messages (or

a message asking the transaction to roll back, in case of a deadlock)

xv The requesting transaction waits until its request is answered

• The lock manager maintains a data-structure called a lock table to record granted locks

and pending requests

• The lock table is usually implemented as an in-memory hash table indexed on the name

of the data item being locked

Lock Table

• Black rectangles indicate granted locks, white ones indicate waiting requests

• Lock table also records the type of lock granted or requested

• New request is added to the end of the queue of requests for the data item, and

granted if it is compatible with all earlier locks

• Unlock requests result in the request being deleted, and later requests are checked to see

if they can now be granted

• If transaction aborts, all waiting or granted requests of the transaction are deleted

– lock manager may keep a list of locks held by each transaction, to implement

this efficiently

• Graph-Based Protocols

• Graph-based protocols are an alternative to two-phase locking

• Impose a partial ordering on the set D = {d1, d2 ,..., dh} of all data items.

– If di dj then any transaction accessing both di and dj must access di before

accessing dj.

– Implies that the set D may now be viewed as a directed acyclic graph, called a

database graph.

• The tree-protocol is a simple kind of graph protocol.

Tree Protocol

• Only exclusive locks are allowed.

• The first lock by Ti may be on any data item. Subsequently, a data Q can be locked by

Ti only if the parent of Q is currently locked by Ti.

• Data items may be unlocked at any time.

• A data item that has been locked and unlocked by Ti cannot subsequently be relocked

by Ti

Timestamp-Based Protocols:

• Each transaction is issued a timestamp when it enters the system. If an old transaction Ti

has time-stamp TS(Ti), a new transaction Tj is assigned time-stamp TS(Tj) such that TS(Ti)

<TS(Tj).

• The protocol manages concurrent execution such that the time-stamps determine the

serializability order.

• In order to assure such behavior, the protocol maintains for each data Q two timestamp

values:

– W-timestamp(Q) is the largest time-stamp of any transaction that executed

write(Q) successfully.

– R-timestamp(Q) is the largest time-stamp of any transaction that executed

read(Q) successfully.

• Timestamp-Based Protocols (Cont.)

• The timestamp ordering protocol ensures that any conflicting read and write

operations are executed in timestamp order.

• Suppose a transaction Ti issues a read(Q)

– If TS(Ti) W-timestamp(Q), then Ti needs to read a value of Q that was

already overwritten.

Hence, the read operation is rejected, and Ti is rolled back.

– If TS(Ti) W-timestamp(Q), then the read operation is executed, and R-

timestamp(Q) is set to max(R-timestamp(Q), TS(Ti)).

• Suppose that transaction Ti issues write(Q).

– If TS(Ti) < R-timestamp(Q), then the value of Q that Ti is producing was needed

previously, and the system assumed that that value would never be produced.

Hence, the write operation is rejected, and Ti is rolled back.

– If TS(Ti) < W-timestamp(Q), then Ti is attempting to write an obsolete value of

Q.

Hence, this write operation is rejected, and Ti is rolled back.

– Otherwise, the write operation is executed, and W-timestamp(Q) is set to

TS(Ti).

Example Use of the Protocol

A partial schedule for several data items for transactions with

timestamps 1, 2, 3, 4, 5

Correctness of Timestamp-Ordering Protocol

• The timestamp-ordering protocol guarantees serializability since all the arcs in the

precedence graph are of the form:

Thus, there will be no cycles in the precedence graph

• Timestamp protocol ensures freedom from deadlock as no transaction ever waits.

• But the schedule may not be cascade-free, and may not even be recoverable.

• Thomas’ Write Rule

• Modified version of the timestamp-ordering protocol in which obsolete write

operations may be ignored under certain circumstances.

• When Ti attempts to write data item Q, if TS(Ti) < W-timestamp(Q), then Ti is

attempting to write an obsolete value of {Q}.

– Rather than rolling back Ti as the timestamp ordering protocol would have done,

this {write} operation can be ignored.

• Otherwise this protocol is the same as the timestamp ordering protocol.

• Thomas' Write Rule allows greater potential concurrency.

– Allows some view-serializable schedules that are not conflict-serializable.

Validation-Based Protocols:

• Execution of transaction Ti is done in three phases.

• Read and execution phase: Transaction Ti writes only

to temporary local variables

• Validation phase: Transaction Ti performs a ``validation test''

to determine if local variables can be written without violating

serializability.

3. Write phase: If Ti is validated, the updates are applied to the database; otherwise, Ti is

rolled back.

• The three phases of concurrently executing transactions can be interleaved, but each

transaction must go through the three phases in that order.

– Assume for simplicity that the validation and write phase occur together,

atomically and serially

• I.e., only one transaction executes validation/write at a time.

• Also called as optimistic concurrency control since transaction executes fully in the

hope that all will go well during validation

• Each transaction Ti has 3 timestamps

– Start(Ti) : the time when Ti started its execution

– Validation(Ti): the time when Ti entered its validation phase

– Finish(Ti) : the time when Ti finished its write phase

• Serializability order is determined by timestamp given at validation time, to increase

concurrency.

– Thus TS(Ti) is given the value of Validation(Ti).

• This protocol is useful and gives greater degree of concurrency if probability of

conflicts is low.

– because the serializability order is not pre-decided, and

– relatively few transactions will have to be rolled back.

• Validation Test for Transaction Tj

• If for all Ti with TS (Ti) < TS (Tj) either one of the following condition holds:

– finish(Ti) < start(Tj)

– start(Tj) < finish(Ti) < validation(Tj) and the set of data items written by Ti

does not intersect with the set of data items read by Tj.

• then validation succeeds and Tj can be committed. Otherwise, validation fails and Tj is

aborted.

• Justification: Either the first condition is satisfied, and there is no overlapped

execution, or the second condition is satisfied and

the writes of Tj do not affect reads of Ti since they occur after Ti has finished its reads.

the writes of Ti do not affect reads of Tj since Tj does not read any item written by Ti.

Schedule Produced by Validation

13.Multiple Granularity:

• Allow data items to be of various sizes and define a hierarchy of data granularities,

where the small granularities are nested within larger ones

• Can be represented graphically as a tree (but don't confuse with tree-locking protocol)

• When a transaction locks a node in the tree explicitly, it implicitly locks all the node's

descendents in the same mode.

• Granularity of locking (level in tree where locking is done):

n fine granularity (lower in tree): high concurrency, high locking overhead

n coarse granularity (higher in tree): low locking overhead, low concurrency

Example of Granularity Hierarchy

The levels, starting from the coarsest (top) level are

– database

– area

– file

– record

• Intention Lock Modes

• In addition to S and X lock modes, there are three additional lock modes with multiple

granularity:

– intention-shared (IS): indicates explicit locking at a lower level of the tree but

only with shared locks.

– intention-exclusive (IX): indicates explicit locking at a lower level with

exclusive or shared locks

shared and intention-exclusive (SIX): the subtree rooted by that node is locked explicitly in

shared mode and explicit locking is being done at a lower level with exclusive-mode locks.

• intention locks allow a higher level node to be locked in S or X mode without having to

check all descendent nodes.

•

The compatibility matrix for all lock modes is:

• Multiple Granularity Locking Scheme

• Transaction Ti can lock a node Q, using the following rules:

 – The lock compatibility matrix must be observed.

 – The root of the tree must be locked first, and may be locked in any mode.

 – A node Q can be locked by Ti in S or IS mode only if the parent of Q is

currently

 locked by Ti in either IX or IS mode.

 – A node Q can be locked by Ti in X, SIX, or IX mode only if the parent of Q is

 currently locked by Ti in either IX or SIX mode.

– Ti can lock a node only if it has not previously unlocked any node (that is, Ti is

two-phase).

– Ti can unlock a node Q only if none of the children of Q are currently locked by

Ti.

• Observe that locks are acquired in root-to-leaf order, whereas they are released in leaf

to-root order.

Recovry System-Failure Classification:

To see where the problem has occurred we generalize the failure into various categories, as

follows:

Transaction failure

When a transaction is failed to execute or it reaches a point after which it cannot be completed

successfully it has to abort. This is called transaction failure. Where only few transaction or

process are hurt.

Reason for transaction failure could be:

• Logical errors: where a transaction cannot complete because of it has some code

error or any internal error condition

• System errors: where the database system itself terminates an active transaction

because DBMS is not able to execute it or it has to stop because of some system

condition. For example, in case of deadlock or resource unavailability systems aborts an

active transaction.

System crash

There are problems, which are external to the system, which may cause the system to stop

abruptly and cause the system to crash. For example interruption in power supply, failure

of underlying hardware or software failure.

Examples may include operating system errors.

Disk failure:

In early days of technology evolution, it was a common problem where hard disk drives or

storage drives used to fail frequently.

Disk failures include formation of bad sectors, unreachability to the disk, disk head crash or

any other failure, which destroys all or part of disk storage

Storage Structure:

We have already described storage system here. In brief, the storage structure can be divided in

various categories:

• Volatile storage: As name suggests, this storage does not survive system crashes and

mostly placed very closed to CPU by embedding them onto the chipset itself for

examples: main memory, cache memory. They are fast but can store a small amount

of information.

• Nonvolatile storage: These memories are made to survive system crashes. They are

huge in data storage capacity but slower in accessibility. Examples may include, hard

disks, magnetic tapes, flash memory, non-volatile (battery backed up) RAM.

Recovery and Atomicity:

Modifying the database without ensuring that the transaction will commit may leave the

database in an inconsistent state.Consider transaction Ti that transfers $50 from account A to

account B; goal is either to perform all database modifications made by Ti or none at all. Several

output operations may be required for Ti (to output A and B). A failure may occur after one of

these modifications have been made but before all of them are made.To ensure atomicity despite

failures, we first output information describing the modifications to stable storage without

modifying the database itself.We study two approaches:

log-based recovery, and shadow-paging

Recovery Algorithms

• Recovery algorithms are techniques to ensure database consistency and transaction

atomicity and durability despite failures

• Recovery algorithms have two parts

– Actions taken during normal transaction processing to ensure enough

information exists to recover from failures

– Actions taken after a failure to recover the database contents to a state that

ensures atomicity, consistency and durability.

17.Log-Based Recovery:

• A log is kept on stable storage.

– The log is a sequence of log records, and maintains a record of update activities

on the database.

• When transaction Ti starts, it registers itself by writing a

<Ti start>log record

• Before Ti executes write(X), a log record <Ti, X, V1, V2> is written, where V1 is the

value of X before the write, and V2 is the value to be written to X.

 – Log record notes that Ti has performed a write on data item Xj Xj had value V1

before the write, and will have value V2 after the write.

 • When Ti finishes it last statement, the log record <Ti commit> is written.

• We assume for now that log records are written directly to stable storage (that is, they

are not buffered)

• Two approaches using logs

– Deferred database modification

– Immediate database modification

• Deferred Database Modification

• The deferred database modification scheme records all modifications to the log, but

defers all the writes to after partial commit.

• Assume that transactions execute serially

• Transaction starts by writing <Ti start> record to log.

• A write(X) operation results in a log record <Ti, X, V> being written, where V is the

new value for X

– Note: old value is not needed for this scheme

• The write is not performed on X at this time, but is deferred.

• When Ti partially commits, <Ti commit> is written to the log

• Finally, the log records are read and used to actually execute the previously deferred

writes.

• During recovery after a crash, a transaction needs to be redone if and only if both

<Ti start> and<Ti commit> are there in the log.

• Redoing a transaction Ti (redoTi) sets the value of all data items updated by

the transaction to the new values.

• Crashes can occur while

– the transaction is executing the original updates, or

– while recovery action is being taken

• example transactions T0 and T1 (T0 executes before T1):T0: read

(A) T1 : read (C)

A: - A - 50 C:- C- 100

Write (A) write (C)

read (B)

B:- B + 50

write (B)

• Below we show the log as it appears at three instances of time.

• If log on stable storage at time of crash is as in case:

• No redo actions need to be taken

• redo(T0) must be performed since <T0 commit> is present

• redo(T0) must be performed followed by redo(T1) since

<T0 commit> and <Ti commit> are present

• Immediate Database Modification

• The immediate database modification scheme allows database updates of an

uncommitted transaction to be made as the writes are issued

– since undoing may be needed, update logs must have both old value and new

value

• Update log record must be written before database item is written

– We assume that the log record is output directly to stable storage

– Can be extended to postpone log record output, so long as prior to execution of

 an output(B) operation for a data block B, all log records corresponding toitems

B must be flushed to stable storage

Immediate Database Modification

• Output of updated blocks can take place at any time before or after transaction commit

• Order in which blocks are output can be different from the order in which they are

written.

• Recovery procedure has two operations instead of one:

– undo(Ti) restores the value of all data items updated by Ti to their old values,

going backwards from the last log record for Ti

– redo(Ti) sets the value of all data items updated by Ti to the new values, going

forward from the first log record for Ti

• Both operations must be idempotent

– That is, even if the operation is executed multiple times the effect is the same as

if it is executed once

• Needed since operations may get re-executed during recovery

• When recovering after failure:

– Transaction Ti needs to be undone if the log contains the record

<Ti start>, but does not contain the record <Ti commit>.

– Transaction Ti needs to be redone if the log contains both the record <Ti start>

and the record <Ti commit>.

• Undo operations are performed first, then redo operations.

• Immediate Database Modification Example

Log Write Output

<T0 start>

<T0, A, 1000, 950>

To, B, 2000, 2050

A = 950

B = 2050

<T0 commit>

<T1 start>

<T1, C, 700, 600>

C = 600

BB, BC

<T1 commit>

BA

• Note: BX denotes block containing X.

• Immediate DB Modification Recovery Example

Below we show the log as it appears at three instances of time.

Recovery actions in each case above are:

• undo (T0): B is restored to 2000 and A to 1000.

• undo (T1) and redo (T0): C is restored to 700, and then A and B

are set to 950 and 2050 respectively.

• redo (T0) and redo (T1): A and B are set to 950 and

2050 respectively. Then C is set to 600

Checkpoints

• Problems in recovery procedure as discussed earlier :

1. searching the entire log is time-consuming

2. we might unnecessarily redo transactions which have already

3. output their updates to the database.

• Streamline recovery procedure by periodically performing checkpointing

1. Output all log records currently residing in main memory onto stable storage.

2. Output all modified buffer blocks to the disk.

3. Write a log record < checkpoint> onto stable storage.

• During recovery we need to consider only the most recent transaction Ti that started

before the checkpoint, and transactions that started after Ti.

1. Scan backwards from end of log to find the most recent <checkpoint> record

2. Continue scanning backwards till a record <Ti start> is found.

3. Need only consider the part of log following above start record. Earlier part of

 log can be ignored during recovery, and can be erased whenever desired.

4. For all transactions (starting from Ti or later) with no <Ti commit>, execute

 undo(Ti). (Done only in case of immediate modification.)

5. Scanning forward in the log, for all transactions starting from Ti or later with

 a <Ti commit>, execute redo(Ti).

• Recovery With Concurrent Transactions

• We modify the log-based recovery schemes to allow multiple transactions to execute

concurrently.

1. All transactions share a single disk buffer and a single log

2. A buffer block can have data items updated by one or more transactions

• We assume concurrency control using strict two-phase locking;

1. i.e. the updates of uncommitted transactions should not be visible to other

transactions

• Otherwise how to perform undo if T1 updates A, then T2 updates A and

commits, and finally T1 has to abort?

• Logging is done as described earlier.

1. Log records of different transactions may be interspersed in the log.

22. Recovery with Concurrent Transactions:

• The checkpointing technique and actions taken on recovery have to be changed

1. since several transactions may be active when a checkpoint is performed.

• Checkpoints are performed as before, except that the checkpoint log record is now of

the form

checkpoint L>

where L is the list of transactions active at the time of the checkpoint

1. We assume no updates are in progress while the checkpoint is carried out (will

relax this later)

• When the system recovers from a crash, it first does the following:

1. Initialize undo-list and redo-list to empty

2. Scan the log backwards from the end, stopping when the first <checkpoint L>

record is found.

For each record found during the backward scan:

• if the record is <Ti commit>, add Ti to redo-list

• if the record is <Ti start>, then if Ti is not in redo-list, add Ti to undo-

list

3. For every Ti in L, if Ti is not in redo-list, add Ti to undo-list

• At this point undo-list consists of incomplete transactions which must be undone, and

redo-list consists of finished transactions that must be redone.

Recovery now continues as follows:

1. Scan log backwards from most recent record, stopping when

<Ti start> records have been encountered for every Ti in undo-list.

• During the scan, perform undo for each log record that belongs to a

transaction in undo-list.

2. Locate the most recent <checkpoint L> record.

3. Scan log forwards from the <checkpoint L> record till the end of the log.

• During the scan, perform redo for each log record that belongs to a

transaction on redo-list

Example of Recovery

• Go over the steps of the recovery algorithm on the following log:

<T0 start>

<T0, A, 0, 10>

<T0 commit>

<T1 start> /* Scan at step 1 comes up to here */

<T1, B, 0, 10>

<T2 start>

<T2, C, 0, 10>

<T2, C, 10, 20>

<checkpoint {T1, T2}>

<T3 start>

<T3, A, 10, 20>

<T3, D, 0, 10>

<T3 commit>

Log Record Buffering

• Log record buffering: log records are buffered in main memory, instead of of being

output directly to stable storage.

– Log records are output to stable storage when a block of log records in the

buffer is full, or a log force operation is executed.

• Log force is performed to commit a transaction by forcing all its log records (including

the commit record) to stable storage.

• Several log records can thus be output using a single output operation, reducing the I/O

cost.

• The rules below must be followed if log records are buffered:

– Log records are output to stable storage in the order in which they are created.

– Transaction Ti enters the commit state only when the log record

<Ti commit> has been output to stable storage.

– Before a block of data in main memory is output to the database, all log records

pertaining to data in that block must have been output to stable storage.

• This rule is called the write-ahead logging or WAL rule

– Strictly speaking WAL only requires undo information to be

output

Buffer Management:

• Database maintains an in-memory buffer of data blocks

– When a new block is needed, if buffer is full an existing block needs to be

removed from buffer

– If the block chosen for removal has been updated, it must be output to disk

• If a block with uncommitted updates is output to disk, log records with undo

information for the updates are output to the log on stable storage first

– (Write ahead logging)

• No updates should be in progress on a block when it is output to disk. Can be ensured

as follows.

– Before writing a data item, transaction acquires exclusive lock on block

containing the data item

– Lock can be released once the write is completed.

• Such locks held for short duration are called latches.

– Before a block is output to disk, the system acquires an exclusive latch on the

block

• Ensures no update can be in progress on the block

• Database buffer can be implemented either

– in an area of real main-memory reserved for the database, or

– in virtual memory

• Implementing buffer in reserved main-memory has drawbacks:

– Memory is partitioned before-hand between database buffer and applications,

 limiting flexibility.

 Needs may change, and although operating system knows best how memory

should be divided up at any time, it cannot change the partitioning of memory.

• Database buffers are generally implemented in virtual memory in spite of some

drawbacks:

– When operating system needs to evict a page that has been modified, the page is

written to swap space on disk.

– When database decides to write buffer page to disk, buffer page may be in swap

space, and may have to be read from swap space on disk and output to the

database on disk, resulting in extra I/O!

• Known as dual paging problem.

– Ideally when OS needs to evict a page from the buffer, it should pass control to

database, which in turn should

• Output the page to database instead of to swap space (making sure to

output log records first), if it is modified

• Release the page from the buffer, for the OS to use

Dual paging can thus be avoided, but common operating systems do not

support such functionality.

Failure with Loss of Nonvolatile Storage:

• So far we assumed no loss of non-volatile storage

• Technique similar to checkpointing used to deal with loss of non-volatile storage

– Periodically dump the entire content of the database to stable storage
– No transaction may be active during the dump procedure; a procedure similar to

 checkpointing must take place

 Output all log records currently residing in main memory onto stable

 storage.

ARIES

• ARIES is a state of the art recovery method

– Incorporates numerous optimizations to reduce overheads during normal

processing and to speed up recovery

– The “advanced recovery algorithm” we studied earlier is modeled after ARIES,

but greatly simplified by removing optimizations

• Unlike the advanced recovery algorithm, ARIES

– Uses log sequence number (LSN) to identify log records

– Stores LSNs in pages to identify what updates have already been applied to a

database page

Physiological redo

– Dirty page table to avoid unnecessary redos during recovery

– Fuzzy checkpointing that only records information about dirty pages, and does

not require dirty pages to be written out at checkpoint time

More coming up on each of the above …

Remote Backup Systems

• Remote backup systems provide high availability by allowing transaction processing to

continue even if the primary site is destroyed.

• Detection of failure: Backup site must detect when primary site has failed

FILE ORGANIZATIONS AND INDEXING

5.1.0 FILE ORGANIZATIONS AND INDEXING: The file of records is an important abstraction in a
DBMS, and is implemented by the files. A file can be created, destroyed, and have records inserted into and
deleted from it.

A relation is typically stored in a file of records. The file layer stores the records in a file in a collection of disk
pages. It keeps track of pages allocated to each file, and as records are inserted into and deleted from the file, it
also tracks available space within pages allocated to the file.

The simplest file structure is an unordered file, or heap file. Records in a heap file are stored in random order
across the pages of the file. A heap file organization supports retrieval of all records, or retrieval of a particular
record specified by its rid; the file manager must keep track of the pages allocated for the file.

An index is a data structure that organizes data records on disk to optimize certain kinds of retrieval operations.
An index allows us to efficiently retrieve all records that satisfy search conditions on the search key fields of the
index. We can also create additional indexes on a given collection of data records, each with a different search
key, to speed up search operations that are not efficiently supported by the file organization used to store the
data records.

There are three main alternatives for what to store as a data entry in an index:

3. A data entry K* is an actual data record (with search key value k).

4. A data entry is a (k, rid) pair, where rid is the record id of a data record with search key value

k.

5. A data entry is a (k, rid-list) pair, where rid-list is a list of record ids of data records with search key value k.

5.1.1 Clustered Indexes: When a file is organized so that the ordering of data records is the same as or close to
the ordering of data entries in some index, we say that the index is clustered; otherwise, it is an unclustered
index. An index that can be a clustered only if the data records are sorted on the search key field. Otherwise,
the order of the data records is random, defined purely by their physical order, and there is no reasonable way
to arrange the data entries in the index in the same order.

The cost of using an index to answer a range search query can vary tremendously based on whether the index is
clustered. If the index is clustered, i.e., we are using the search key of a clustered file, the rids in qualifying data
entries point to a contiguous collection of records, and we need to retrieve only a few data pages.

Two data entries are said to be duplicates if they have the same value for the search key field associated with
the index. A primary index is guaranteed not to contain duplicates, but an index on other (collections of) fields
can contain duplicates. In general, a secondary index contains duplicates. If we know that no duplicates exist,
that is, we know that the search key contains some candidate key, we call the index a unique index.

5.2 INDEX DATA STRUCTURES

5.2.1 Hash-Based Indexing: We can organize records using a technique called hashing to
quickly find records that have a given search key value. In this approach, the records in a file are
grouped in buckets, where a bucket consists of a primary page and, possibly, additional pages
linked in a chain. The bucket to which a record belongs can be determined by applying a special
function, called a hash function, to the search key. Given a bucket number, a hash-based index
structure allows us to retrieve the primary page for the bucket in one or two disk l/Os.

On inserts, the record is inserted into the appropriate bucket, with 'overflow' pages allocated as
necessary. To search for a record with a given search key value, we apply the hash function to
identify the bucket to which such records belong and look at all pages in that bucket. If we do not
have the search key value for the record.

Hash indexing is illustrated in Figure 5.2, where the data is stored in a file that is hashed on age;
the data entries in this first index file are the actual data records. Applying the hash function to
the age field identifies the page that the record belongs to. The hash function h for this example
is quite simple; it converts the search key value to its binary representation and uses the two least
significant bits as the bucket identifier. Figure 5.2 also shows an index with search key sal that
contains (sal, rid) pairs as data entries.

5.2.2 Tree-Based Indexing: An alternative to hash-based indexing is to organize records using a
tree like data structure. The data entries are arranged in sorted order by search key value, and a
hierarchical search data structure is maintained that directs searches to the correct page of data
entries. Figure 5.3 shows the employee records organized in a tree-structured index with search
key age

The lowest level of the tree, called the leaf level, contains the data entries; there were additional
employee records, some with age less than 22 and some with age greater than 50 (the lowest and
highest age values that appear in Figure 5.3). Additional records with age less than 22 would
appear in leaf pages to the left page L1, and records with age greater than 50 would appear in
leaf pages to the right of page.

The B+ tree is an index structure that ensures that all paths from the root to a leaf in a given tree
are of the same length, that is, the structure is always balanced in height. Finding the correct leaf
page is faster than binary search of the pages in a sorted file because each non-leaf node can
accommodate a very large number of node-pointers, and the height of the tree

is rarely more than three or four in practice. The height of a balanced tree is the length of a path
from root to leaf. The average number of children for a non-leaf node is called the fan-out of the
tree. If every non-leaf node has n children, a tree of height h has nh leaf pages.

5.3 COMPARISON OF FILE ORGANIZATIONS

We now compare the costs of some simple operations for several basic file organizations on a
collection of employee records. We assume that the files and indexes are organized according to
the composite search key (age,sal) and that all selection operations are specified on these fields.

Our goal is to emphasize the importance of the choice of an appropriate file organization, and the
above list includes the main alternatives to consider in practice. Obviously, we can keep the
records unsorted or sort them. We can also choose to build an index on the data file. Note that
even if the data file is sorted, an index whose search key differs from the sort order behaves like
an index on a heap file.

The operations we consider are these:

7. Scan: Fetch all records in the file. The pages in the file must be fetched from disk into the
buffer pool.
8.Search with Equality Selection: Fetch all records that satisfy an equality selection.

9.Search with Range Selection: Fetch all records that satisfy a range selection

10. Insert a Record: Insert a given record into the file. We must identify the page in the file
into which the new record must be inserted, fetch that page from disk, modify it to include the
new record, and then write back the modified page.

11. Delete a Record: Delete a record that is specified using its rid. We must identify the page
that contains the record, fetch it from disk, modify it, and write it back.

5.3.1 Cost Model: In comparison of file organizations, we use a simple cost model that allows
us to estimate the cost (in terms of execution time) of different database operations. We use B to
denote the number of data pages when records are packed onto pages with no wasted space, and
R to denote the number of records per page. The average time to read or write a disk page is D,
and the average time to process a record (e.g., to compare a field value to a selection constant) is
C.

In the hashed file organization, we use a function, called a hash function, to map a record into a
range of numbers; the time required to apply the hash function to a record is H. For tree indexes,
we will use F to denote the fan-out, which typically is at least 100 as mentioned. Typical values
today are D = 15 milliseconds, C and H = 100 nanoseconds; we therefore expect the cost of I/O
to dominate. I/O is often (even typically) the dominant component of the cost of database
operations, and so considering I/O costs gives us a good first approximation to the true costs.
Further, CPU speeds are steadily rising, whereas disk speeds are not increasing at a similar pace.

We have chosen to concentrate on the I/O component of the cost model, and we assume the
simple constant C for in-memory per-record processing cost. Bear the following observations in
mind:

5. Real systems must consider other aspects of cost, such as CPU costs (and network
transmission costs in a distributed database).

6. Even with our decision to focus on I/O costs, an accurate model would be too complex for
our purposes of conveying the essential ideas in a simple way.

We therefore use a simplistic model in which we just count the number of pages read from or
written to disk as a measure of I/O. The cost is equal to the time required to seek the first page in
the block and transfer all pages in the block. Such blocked access can be much cheaper than
issuing one I/O request per page in the block, especially if these requests do not follow
consecutively, because we would have an additional seek cost for each page in the block.

5.4 TREE-STRUCTURED INDEXING

5.4.0 Introduction: We now consider two index data structures, called ISAM and B+ trees,
based on tree organizations. These structures provide efficient support for range searches,
including sorted file scans as a special case.

5.4.1 INDEXED SEQUENTIAL ACCESS METHOD (ISAM): The ISAM data structure is
illustrated in Figure 5.5. The data entries of the ISAM index are in the leaf pages of the tree and
additional overflow pages chained to some leaf page. Database systems carefully organize the
layout of pages so that page boundaries correspond closely to the physical characteristics of the
underlying storage device. The ISAM structure is completely static and facilitates such low-level
optimizations. Each tree node is a disk page, and all the data resides in the leaf pages.

If there are several inserts to the file subsequently, so that more entries are inserted into a leaf
than will fit onto a single page, additional pages are needed because the index structure is static.
These additional pages are allocated from an overflow area.

5.4.2 Overflow Pages, Locking Considerations: The fact that only leaf pages are modified also
has an important advantage with respect to concurrent access. When a page is accessed, it is
typically 'locked' by the requestor to ensure that it is not concurrently modified by other users of
the page. To modify a page, it must be locked in 'exclusive' mode, which is permitted only when
no one else holds a lock on the page. Locking can lead to queues of users waiting to get access to
a page.

5.5 B+ TREES: A DYNAMIC INDEX STRUCTURE

5.5.0 B+ Tree: A static structure such as the ISAM index suffers from the problem that long
overflow chains can develop as the file grows, leading to poor performance. This problem
motivated the development of more flexible, dynamic structures that adjust gracefully to inserts
and deletes.

The B+ tree search structure, which is widely used, is a balanced tree in which the internal nodes
direct the search and the leaf nodes contain the data entries. Since the tree structure grows and
shrinks dynamically. To retrieve all leaf pages efficiently, we have to link them using page
pointers. By organizing them into a doubly linked list, we can easily traverse the sequence

of leaf pages (sometimes called the sequence set) in either direction. This structure is illustrated
in

Figure 5.8

The following are some of the main characteristics of a B+ tree:

• Operations (insert, delete) on the tree keep it balanced.

• A minimum occupancy of 50 percent is guaranteed for each node except the root.

• Searching for a record requires just a traversal from the root to the appropriate leaf.

For B+ trees every node contains m entries, where d <=m<=2d. The value d is a parameter of the
B+ tree, called the order of the tree, and is a measure of the capacity of a tree node. The root
node is the only exception.

B+ trees are usually also preferable to ISAM indexing because inserts are handled gracefully
without overflow chains. Two factors favor ISAM: the leaf pages are allocated in sequence, and
the locking overhead of ISAM is lower than that for B+ trees. As a general rule, however, B+
trees are likely to perform better than ISAM.

Format of node: Every node contains P pointer and K key value which will be pointing to the
actual data. Non-leaf nodes with m 'index entries contain m+1 pointers to children. Pointer Pi
points to a subtree in which all key values K are such that Ki < K < Ki+1.

5.5.1 SEARCH: The algorithm for search finds the leaf node in which a given data entry
belongs. We use the notation *ptr to denote the value pointed to by a pointer variable ptr and &
(value) to denote the address of value. Note that finding i in tree_search requires us to search
within the node, which can be done with either a linear search or a binary search (e.g., depending
on the number of entries in the node). In discussing the search, insertion, and deletion algorithms
for B+ trees, we assume that there are no duplicates. Refer figure 5.10 for searching algorithm.

Consider the sample B+ tree shown in Figure 5.11. This B+ tree is of order d=2. That is, each
node contains between 2 and 4 entries. Each non--leaf entry is a <key value,' Nodepointer> pair;
at the leaf level, the entries are data records that we denote by k*.

5.5.2 INSERT: The algorithm

for insertion takes an entry, finds the leaf node where it belongs, and inserts it there. Pseudocode
for the B+ tree insertion algorithm is given in Figure 5.12. The basic idea behind the algorithm is
that we recursively insert the entry by calling the insert algorithm on the appropriate child node.
Usually, this procedure results in going down to the leaf node where the entry belongs, placing
the entry there, and returning all the way back to the root node. Occasionally a node is full and it
must be split. When the node is split, an entry pointing to the node created by the split must be
inserted into its parent; this entry is pointed to by the pointer variable newchildentry. If the (old)
root is split, a new root node is created and the height of the tree increases by 1.

In the following example when a value 8 is entered into the leaf node the value 5 is pushed up
to its root node.

.5.3 DELETE: The algorithm for deletion takes an entry, finds the leaf node where it belongs,
and deletes it. Pseudocode for the B+ tree deletion algorithm is given in Figure 5.14. The basic
idea behind the algorithm is that we recursively delete the entry by calling the delete algorithm
on the appropriate child node. We usually go down to the leaf node where the entry belongs,
remove the entry from there, and return all the way back to the root node. If entries are
redistributed between two nodes, their parent node must be updated to reflect this; the key value
in the index entry pointing to the second node must be changed to be the lowest search key in the
second node. If two nodes are merged, their parent must be updated to reflect this by deleting
the index entry for the second node; this index entry is pointed to by the pointer variable
oldchildentry when the delete call returns to the parent node. If the last entry in the root node is
deleted in this manner because one of its children was deleted, the height of the tree decreases by
1.

5.5.4 DUPLICATES: The basic search algorithm assumes that all entries with a given key value
reside on a single leaf page. One way to satisfy this assumption is to use overflow pages to deal
with duplicates. Typically, however, we use an alternative approach for duplicates. We handle
them just like any other entries and several leaf pages may contain entries with a given key
value. To retrieve all data entries with a given key value, we must search for the left-most data
entry with the given key value and then possibly retrieve more than one leaf page (using the leaf
sequence pointers). Modifying the search algorithm to find the left-most data entry in an index
with duplicates is performed.

5.5.5 Bulk-Loading a B+ Tree: When there is a collection of data records, systems provide a
bulk-loading utility for creating a B+ tree index on an existing collection of data records. Thefirst
step is to sort the data entries k* to be inserted into the (to be created) B+ tree according to the
search key k.

In the following example we assume that each data page can hold only two entries, and that each
index page can hold two entries and an additional pointer (i.e., the B+ tree is assumed to be of
order d = 1). After the data entries have been sorted, we allocate an empty page to serve as the
root and insert a pointer to the first page of (sorted) entries into it. We illustrate this process in
Figure 5.15.

5.6 HASH-BASED INDEXING

5.6.0 Hashing Function: The basic idea is to use a hashing function, which maps values in a
search field into a range of bucket numbers to find the page on which a desired data entry
belongs. We use a simple scheme called Static Hashing to introduce the idea. This scheme, like
ISAM, suffers from the problem of long overflow chains, which can affect performance. Two
solutions to the problem are presented.

• The Extendible Hashing scheme uses a directory to support inserts and deletes efficiently
with no overflow pages.

• The Linear Hashing scheme uses a clever policy for creating new buckets and supports
inserts and deletes efficiently without the use of a directory.

5.6.1 STATIC HASHING: The Static Hashing scheme is illustrated in Figure 5.18. The pages
containing the data can be viewed as a collection of buckets, with one primary page and possibly
additional overflow pages per bucket. A file consists of buckets a through N - 1, with one
primary page per bucket initially. Buckets contain data entries, which can be any of the three
alternatives.

To search for a data entry, we apply a hash function h to identify the bucket to which it belongs
and then search this bucket. To speed the search of a bucket, we can maintain data entries in
sorted order by search key value. To insert a data entry, we use the hash function to identify the
correct bucket and then put the data entry there. If there is no space for this data entry, we
allocate a new overflow page, put the data entry on this page, and add the page to the overflow
chain of the bucket. To delete a data entry, we use the hashing function to identify the correct
bucket, locate the data entry by searching the bucket, and then remove it. If this data entry is the
last in an overflow page, the overflow page is removed from the overflow chain of the bucket
and added to a list of free pages.

The hash function is an important component of the hashing approach. It must distribute values
in the domain of the search field uniformly over the collection of buckets. If we have N buckets,
numbered a through N - 1, a hash function h of the form h(value) = (a * value +b) works well in
practice. (The bucket identified is h(value) mod N.) The constants a and b can be chosen to 'tune'
the hash function.

Since the number of buckets in a Static Hashing file is known when the file is created, the
primary pages can be stored on successive disk pages. Hence, a search ideally requires just one
disk I/O, and insert and delete operations require two I/Os (read and write the page), although

The main problem with Static Hashing is that the number of buckets is fixed. If a file shrinks
greatly, a lot of space is wasted; more important, if a file grows a lot, long overflow chains
develop, resulting in poor performance.

Another alternative is to use dynamic hashing techniques such as Extendible and Linear
Hashing, which deal with inserts and deletes gracefully.

5.7 Dynamic Hashing Techniques - EXTENDIBLE HASHING

In Static Hashing the performance degrades with overflow pages. This problem, however, can be
overcome by a simple idea: Use a directory of pointers to buckets, and double the size of the
number of buckets by doubling just the directory and splitting only the bucket that overflowed
which the central concept of Extendible is hashing.

To understand the idea, consider the sample file shown in Figure 5.19. The directory consists of
an array of size 4, with each element being a pointer to a bucket (global depth). To locate a data

entry, we apply a hash function to the search field and take the last 2 bits of its binary
representation to get a number between 0 and 3. The pointer in this array position gives us the
desired bucket; we assume that each bucket can hold four data entries. Therefore, to locate a data

entry with hash value 5 (binary 101), we look at directory element 01 and follow the pointer to
the data page (bucket B in the figure). To insert. a dat.a entry, we search to find the appropriate
bucket.. For example, to insert a data entry with hash value 13 (denoted as 13*), we examine

directory element 01 and go to the page containing data entries 1*, 5*, and 21 *. Since the page
has space for an additional data entry, we are done after we insert the entry (Figure 5.20).

Next, let us consider insertion of a data entry into a full bucket. The essence of the Extendible
Hashing idea lies in how we deal with this case. Consider the insertion of data entry 20* (binary
10100). Looking at directory clement 00, we arc led to bucket A, which is already full. We just
first split the bucket by allocating a new bucket and redistributing the contents (including the
new entry to be inserted) across the old bucket and its 'split image.' To redistribute entries across
the old bucket and its split image, we consider the last three bits of h(T); the last two bits are 00,
indicating a data entry that belongs to one of these two buckets, and the third bit discriminates
between these buckets. The redistribution of entries is illustrated in Figure 5.21

Therefore, doubling the file requires allocating a new bucket page, writing both this page and the
old bucket page that is being split, and doubling the directory array. The directory is likely to be
much smaller than the file itself because each element is just a page-id, and can be doubled by
simply copying it over The cost of doubling is now quite acceptable.

We observe that the basic technique used in Extendible Hashing is to treat the result of applying
a hash function h a" a binary number and interpret the last d bits, where d depends on the size of
the directory, as an offset into the directory.

In our example, d is originally 2 because we only have four buckets; after the split, d becomes 3
because we now have eight buckets. A corollary is that, when distributing entries across a bucket
and its split image, we should do so on the basis of the dth bit. (Note how entries are
redistributed in our example; see Figure 5.22) The number d, called the global depth of the
hashed file, is kept as part of the header of the file. It is used every time we need to locate a data
entry. An important point that arises is whether splitting a bucket necessitates a directory
doubling.

To differentiate between these cases and determine whether a directory doubling is needed, we
maintain a local depth for each bucket. If a bucket whose local depth is equal to the global depth
is split, the directory must be doubled. Initially, all local depths are equal to the global depth
(which is the number of bits needed to express the total number of buckets). We increment the
global depth by 1 each time the directory doubles, of course.

On the other hand, the directory grows in spurts and can become large for skewed data
distributions. Even if the distribution of search values is skewed, the choice of a good hashing
function typically yields a fairly uniform distribution of hash values; skew is therefore not a
problem in practice.

5.8 LINEAR HASHING

Linear Hashing is a dynamic hashing technique, it does not require a directory, deals naturally
with collisions, and offers a lot of flexibility with respect to the timing of bucket splits. If the
data distribution is very skewed, however, overflow chains could cause Linear Hashing
performance to be worse than that of Extendible Hashing.

The scheme utilizes a family of hash functions h0, h1, h2, ... , with the property that each
function's range is twice that of its predecessor. That is, if hi maps a data entry into one of M
buckets, hi+1 maps a data entry into one of M buckets. Such a family is typically obtained by
choosing a hash function hand an initial number N ofbuckets,2 and defining hi(value) = h(value)
mod (2i N).

The idea is best understood in terms of rounds of splitting. During round number Level, only
hash functions hLevel and hLevel+1 are in use. The buckets in the file at the beginning of the
round are split, one by one from the first to the last bucket, thereby doubling the number of
buckets. At any given point within a round, therefore, we have buckets that have been split,
buckets that are yet to be split, and buckets created by splits in this round.

Consider how we search for a data entry with a given search key value. We apply hash function
h Level , and if this leads us to one of the unsplit buckets, we simply look there. If it leads us to
one of the split buckets, the entry may be there or it may have been moved to the new bucket
created earlier in this round by splitting this bucket; to determine which of the two buckets
contains the entry, we apply hLevel+1.

5.8.1 EXTENDIBLE VS. LINEAR HASHING

To understand the relationship between Linear Hashing and Extendible Hashing, imagine that we also have a
directory in Linear Hashing with elements 0 to N - 1. The first split is at bucket 0, and so we add directory
element N. In principle, we may imagine that the entire directory has been doubled at this point; however,
because element 1 is the same as element N + 1, elernent 2 is the same the element N + 2, and so on, we can
avoid the actual copying for the rest of the directory. The second split occurs at bucket 1; now directory
element N + 1 becomes significant and is added. At the end of the round, all the original N buckets are split,
and the directory is doubled in size (because all elements point to distinct buckets).

We observe that the choice of hashing functions is actually very similar to what goes on in Extendible Hashing-
--in effect, moving from hi to hi+1 in Linear Hashing corresponds to doubling the directory in Extendible
Hashing. Both operations double the effective range into which key values are hashed; but whereas the
directory is doubled in a single step of Extendible Hashing, moving from hi to hi+l, along with a corresponding
doubling in the number of buckets, occurs gradually over the course of a round in Linear Hashing.

The new idea behind Linear Hashing is that a directory can be avoided by a clever choice of the bucket to split.
On the other hand, by always splitting the appropriate bucket, Extendible Hashing may lead to a reduced
number of splits and higher bucket occupancy.

The directory analogy is useful for understanding the ideas behind Extendible and Linear Hashing. However,
the directory structure can be avoided for Linear Hashing (but not for Extendible Hashing) by allocating
primary bucket pages consecutively, which would allow us to locate the page for bucket i by a simple offset
calculation. For uniform distributions, this implementation of Linear Hashing has a lower average cost for
equality selections. For skewed distributions, this implementation could result in any empty or nearly empty
buckets, each of which is allocated at least one page, leading to poor performance relative to Extendible
Hashing, which is likely to have higher bucket occupancy.A different implementation of Linear Hashing, in
which a directory is actually maintained, offers the flexibility of not allocating one page per bucket; null
directory elements can be used as in Extendible Hashing. However, this implementation introduces the
overhead of a directory level and could prove costly for large, uniformly distributed files.

